

PRACTICAL WORK BOOK
For Academic Session ______

Semester _________

DIGITAL LOGIC DESIGN
(TC-203)

For
SE (TC)

Name:

Roll Number:

Batch:

Department:

Year:

Department of Electronic Engineering
NED University of Engineering & Technology, Karachi

LABORATORY WORK BOOK

For The Course

TC-203 DIGITAL LOGIC DESIGN

Prepared By:
Mr. Rizwan Aslam Butt (Lecturer)

Revised By:
Ms. Hira Mariam (Lecturer)

Reviewed By:
Dr. Irfan Ahmed (Associate Professor)

Approved By:
The Board of Studies of Department of Electronic Engineering

INTRODUCTION

Digital Logic Design Practical Workbook covers those practical that
are very knowledgeable and quite beneficial in grasping the core
objective of the subject. These practical solidify the theoretical and
practical concepts that are very essential for the engineering students.

This work book comprise of practical covering the topics of Digital
Logic Design that are arranged on modern concepts. Above all this
workbook contains a relevant theory about the Lab session.

CONTENTS

Lab
No. DATE Experiment Page

No.
Remarks/
Signature

1 To become familiar with basic logic gates and
their functions.

2 To implement a Half adder circuit.

3 To implement a Full adder circuit.

4 To learn the operation of BCD to 7-segment
decoder.

5 To learn programming with 8051 microcontrollers
using Keil embedded C environment. Task#1: To
write a code on Keil using 8051 microcontroller
for blinking LEDs and simulate it on proteus.
Task#2: Write an 8051 based code to design a
counting system for a security gate. The count
should be displayed on a seven segment.

6 To blink LEDs connected to port A with a delay
of 500 millisec using PIC 16F877A.

7 To design an astable multi vibrator using 555
timer and to understand Flip Flop operation.

8 To implement a two bit gray counter and a two bit
binary counter using J K flip flops.

9 To design a combinational circuit and implement
it with multiplexers. To use a demultiplexer to
implement a multiple output combinational circuit
from the same input variables.

10 To construct and study the operations of the
following circuits:

11 To construct and study the operations of the
following circuits:

12 (i) Getting familiar with Verilog HDL for
digital design.
(ii) To simulate and verify the verilog code on
ModelSim Software.

13 (i) To understand 4 to 1 MUX working
principle
(ii) To understand ModelSim Software for
Development of Verilog HDL
(iii) To implement and Test 4 to 1 MUX on
Verilog HDL by
• Gate Level Modeling
• Data Flow Modeling

14 (i) To understand Quartus-II Software for
Development of Verilog HDL codes.
(ii) To implement and test Verilog HDL code
of a given function.
(iii) To test the given function program on
ALTERA DE2 board.

1

LAB NO.1

OBJECTIVE: To become familiar with basic logic gates and their

functions.

BRIEF OVERVIEW:
A logic gate is an elementary building block of a digital circuit. Most logic gates have
two inputs and one output. At any given moment, every terminal is in one of the
two binary conditions low (0) or high (1), represented by different voltage levels. The
logic state of a terminal can, and generally does, change often, as the circuit processes
data. In most logic gates, the low state is approximately zero volts (0 V), while the high
state is approximately five volts positive (+5 V).

There are seven basic logic gates: AND, OR, XOR, NOT, NAND, NOR, and XNOR.

AND GATE:

The AND gate is so named because, if 0 is called "false" and 1 is called "true," the gate
acts in the same way as the logical "and" operator. The following illustration and table
show the circuit symbol and logic combinations for an AND gate. (In the symbol, the
input terminals are at left and the output terminal is at right.) The output is "true" when
both inputs are "true." Otherwise, the output is "false."

AND gate

Input 1 Input 2 Output

 0 0 0

 0 1 0

1 0 0

1 1 1

http://searchcio-midmarket.techtarget.com/definition/digital
http://searchcio-midmarket.techtarget.com/definition/circuit
http://searchcio-midmarket.techtarget.com/definition/binary

2

OR GATE:

The OR gate gets its name from the fact that it behaves after the fashion of the logical
inclusive "or." The output is "true" if either or both of the inputs are "true." If both inputs
are "false," then the output is "false."

OR gate

Input 1 Input 2 Output

0 0 0

0 1 1

1 0 1

1 1 1

XOR GATE:

The XOR (exclusive-OR) gate acts in the same way as the logical "either/or." The output
is "true" if either, but not both, of the inputs are "true." The output is "false" if both inputs
are "false" or if both inputs are "true." Another way of looking at this circuit is to observe
that the output is 1 if the inputs are different, but 0 if the inputs are the same.

XOR gate

Input 1 Input 2 Output

0 0 0

 0 1 1

1 0 1

1 1 0

NOT GATE:

3

A logical inverter, sometimes called a NOT gate to differentiate it from other types of
electronic inverter devices, has only one input. It reverses the logic state.

 Inverter or NOT gate

Input Output

1 0

0 1

NAND GATE:

The NAND gate operates as an AND gate followed by a NOT gate. It acts in the manner
of the logical operation "and" followed by negation. The output is "false" if both inputs
are "true." Otherwise, the output is "true."

NAND gate

Input 1 Input 2 Output

 0 0 1

 0 1 1

1 0 1

1 1 0

NOR GATE:

The NOR gate is a combination OR gate followed by an inverter. Its output is "true" if
both inputs are "false." Otherwise, the output is "false."

4

NOR gate

Input 1 Input 2 Output

0 0 1

 0 1 0

1 0 0

1 1 0

XNOR GATE:

The XNOR (exclusive-NOR) gate is a combination XOR gate followed by an inverter. Its
output is "true" if the inputs are the same and "false" if the inputs are different.

XNOR gate

Input 1 Input 2 Output

 0 0 1

 0 1 0

1 0 0

1 1 1

Using combinations of logic gates, complex operations can be performed. In theory, there
is no limit to the number of gates that can be arrayed together in a single device. But in
practice, there is a limit to the number of gates that can be packed into a given physical
space. Arrays of logic gates are found in digital integrated circuits (ICs). As IC
technology advances, the required physical volume for each individual logic gate

5

decreases and digital devices of the same or smaller size become capable of performing
ever-more-complicated operations at ever-increasing speeds.

Common Gate ICs:

Part
number Description

7400
quad 2-input NAND

gate

7402
quad 2-input NOR

gate

7408
quad 2-input AND

gate

7410
triple 3-input NAND

gate

7432 quad 2-input OR gate

7486
quad 2-input XOR

gate

PROCEDURE:

1) Power up the 2-input AND , OR and NOT TTl ICs on a bread board.
2) Apply inputs using push-to-on/off switches and observe the output via

LEDs.
3) Fill the Table provided in the observation area.

OBSERVATIONS:

A B A.B A+B A'
0 0
0 1
1 0
1 1

RESULT:

6

LAB NO.2

OBJECTIVE: To implement a Half adder circuit.

BRIEF OVERVIEW:

To understand what is a half adder you need to know what is an adder first. Adder circuit
is a combinational digital circuit that is used for adding two numbers. A typical adder
circuit produces a sum bit (denoted by S) and a carry bit (denoted by C) as the output.
Typically adders are realized for adding binary numbers but they can be also realized for
adding other formats like BCD (binary coded decimal, XS-3 etc. Besides addition, adder
circuits can be used for a lot of other applications in digital electronics like address
decoding, table index calculation etc. Adder circuits are of two types: Half adder ad Full
adder.

Half adder is a combinational arithmetic circuit that adds two numbers and produces a
sum bit (S) and carry bit (C) as the output. If A and B are the input bits, then sum bit (S)
is the X-OR of A and B and the carry bit (C) will be the AND of A and B. From this it is
clear that a half adder circuit can be easily constructed using one X-OR gate and one
AND gate. Half adder is the simplest of all adder circuit, but it has a major
disadvantage. The half adder can add only two input bits (A and B) and has nothing to
do with the carry if there is any in the input. So if the input to a half adder have a carry,
then it will be neglected it and adds only the A and B bits. That means the binary addition
process is not complete and that’s why it is called a half adder. The truth table, schematic
representation and XOR//AND realization of a half adder are shown in the figure below.

TRUTH TABLE:

7

OBSERVATIONS:

A B Sum
Carry
Out

0 0
0 1
1 0
1 1

RESULT:

The half adder circuit was implemented on a bread board using ICs.

8

LAB NO.3

Objective: To implement a Full adder circuit.

BRIEF OVERVIEW:

A full adder adds binary numbers and accounts for values carried in as well as out. A
one-bit full adder adds three one-bit numbers, often written as A, B, and Cin;A and B are
the operands, and Cin is a bit carried in from the next less significant stage. The full-adder
is usually a component in a cascade of adders, which add 8, 16, 32, etc. binary numbers.
The circuit produces a two-bit output, output carry and sum typically represented by the
signals Cout and S.

TRUTH TABLE:

9

OBSERVATIONS:

The required outputs observed as described in the truth table for sum and carry out are as
follows.

A B
Carry
In Sum

Carry
Out

0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

RESULT:

The Full Adder circuit was implemented using 74LS83 discrete IC and the outputs of
sum and carry out were observed on LEDs.

10

LAB NO.4

OBJECTIVE: To learn the operation of BCD to 7-segment decoder.

CIRCUIT DIAGRAM:

BRIEF OVERVIEW:

Binary Coded Decimal (BCD or 8421 code) is a way to express each decimal digit (0-9)
with a binary code of four bits (0000-1001). With 4 bits, sixteen numbers (0000-1111)
can be represented but in BCD only ten of these are used. The six codes combinations
that are not used are called “invalid codes”.

A BCD to 7-segment display decoder such as 4511, has 4 BCD inputs and 7 output lines,
one for each LED segment. The 4511 is designed to drive a common cathode display and
won't work with a common anode display. In a common cathode display, the cathodes of
all the LEDs are joined together and the individual segments are illuminated by HIGH
voltages. If invalid codes, binary values greater than 1001, are connected to the inputs of
the 4511, the outputs are all 0's and the display is blank.

11

OBSERVATIONS:

BCD Inputs Segment Outputs Display D C B A a b c d e f g
0 0 0 0
0 0 0 1
0 0 1 0
0 0 1 1
0 1 0 0
0 1 0 1
0 1 1 0
0 1 1 1
1 0 0 0
1 0 0 1
1 1 1 1

RESULT:

The above circuit was implemented using 4511 BCD to 7-segment decoder
and a common cathode display.

12

LAB NO. 5

OBJECTIVE : To learn programming with 8051 microcontrollers using
keil environment.

BRIEF OVERVIEW:

Microcontroller is a programmable digital logic device that has on-board micro-
processor, RAM, ROM and many other peripheral functions available on a single ship.
Famous general propose microcontroller families are 8051, PIC and AVR
microcontrollers. These microcontrollers can be programmed in Assembly, C and Basic
languages via specific development environment. The most famous environment for 8051
family program development is Keil uVision. It has provision of programming both in C
and Assembly language.

Task#1:

To write a code on Keil using 8051 microcontroller for blinking led’s and simulate it
on proteus.

Program:

/*To blink Leds using Microcontroller*/
#include <REG51.h>
void delay(unsigned int sec)
{
Unsigned int i,j;
for (i=0;i<sec;i++)
for(j=0;j<1500;j++);
}
void main()
{
int i=0;
P2=0x00;
while(1)
{
P2=0xFF;
delay(100);
P2=0x00;
delay(100);
}
}

13

Simulation in Proteus:

Implement the following circuit in proteus and burn the above code in it.

Task#2:

Write an 8051 based code to design a counting system for a security gate. The count
should be displayed on a seven segment.

Program:

/*Design a security gate to increment the count of persons
entering uptil 9 via switch using 8051 microcontroller*/
#include <REG51.h>
void delay(unsigned int sec)
{
Unsigned int i,j;
for(i=0;i<sec;i++)
for(j=0;j<1500;j++);
}
void main()
{

14

int i=0;
P1=0x00; //Declaring input port
while(1)
{
if(P1^0!=0) //Condition to check whether the switch is
pressed or not
{i++;
}
if(i>9) //To reset the value of count to 0 if increment
increases 9
{
i=0;
}
if(i==0)
{P2=0xC0;
delay(200);
}
else if(i==1)
{P2=0xF9;
delay(200);
}
else if(i==2)
{
P2=0xA4;
delay(200);
}
else if(i==3)
{
P2=0xB0;
delay(200);
}
else if(i==4)
{
P2=0x99;
delay(200);
}
else if(i==5)
{
P2=0x92;
delay(200);
}
else if(i==6)
{
P2=0x82;
delay(200);
}
else if(i==7)
{

15

P2=0xF8;
delay(200);
}
else if(i==8)
{
P2=0x80;
delay(200);
}
else if(i==9)
{
P2=0x90;
delay(200);
}
}
}

Simulation in Proteus:

Implement the following circuit in proteus and burn the above code in it.

16

RESULT:

Write your achievements and experiences here.

17

Lab No.6

OBJECTIVE: To blink LEDs connected to port A with a delay of 500
millisec using PIC 16F877A.

BRIEF OVERVIEW:

Microcontroller is a programmable digital logic device that has on-boad micro-processor,
RAM, ROM and many other peripheral functions available on a single ship. Famous
general propose microcontroller families are 8051 , PIC and AVR microcontrollers.

Program:

void main()
 {
 TRISB = 0 ;
 TRISC=0;
for(;;)
 {
 PORTB = 0xff ;
 PORTC = 0xff ;
Delay_ms(500) ;
 PORTB = 0 ;
 PORTC = 0 ;
Delay_ms(500) ;
 }
 }

Proteus Simulation:

Implement the following circuit in proteus and burn the above code in it.

18

RESULT:

Write your experiences and achievements here.

19

LAB NO.7

OBJECTIVE: To design an Astable multi vibrator using 555 timer and
to understand Flip Flop operation.

BRIEF OVERVIEW:

555 IC is a monolithic timing circuit that can produce accurate and highly stable time
delays or oscillation. Like other commonly used op-amps, this IC is also very much
reliable, easy to use and cheaper in cost. It has a variety of applications
including monostable and astable multivibrators, dc-dc converters, digital logic
probes, waveform generators, analog frequency meters and tachometers, temperature
measurement and control devices, voltage regulators etc. The timer basically operates
in one of the two modes either as a monostable (one-shot) multivibrator or as an astable
(free-running) multivibrator. The SE 555 is designed for the operating temperature range
from – 55°C to 125° while the NE 555 operates over a temperature range of 0° to 70°C.

IC PIN CONFIGURATION:

WORKING MODES:

The 555 has three main operating modes, Monostable, Astable, and Bistable. Each mode
represents a different type of circuit that has a particular output.

Astable mode :
An Astable Circuit has no stable state - hence the name "astable". The output continually
switches state between high and low without any intervention from the user, called a
'square' wave. This type of circuit could be used to give a mechanism intermittent motion

http://www.circuitstoday.com/555-timer-as-monostable-multivibrator
http://www.circuitstoday.com/555-timer-as-an-astable-multivibrator
http://www.circuitstoday.com/6-to-15v-dc-to-dc-converter
http://www.circuitstoday.com/function-generators
http://www.circuitstoday.com/led-bargraph-thermometer
http://www.circuitstoday.com/led-bargraph-thermometer
http://www.circuitstoday.com/category/voltage-regulators
http://www.555-timer-circuits.com/operating-modes.html

20

by switching a motor on and off at regular intervals. It can also be used to flash lamps
and LEDs, and is useful as a 'clock' pulse for other digital ICs and circuits.

Monostable mode :

A Monostable Circuit produces one pulse of a set length in response to a trigger input
such as a push button. The output of the circuit stays in the low state until there is a
trigger input, hence the name "monostable" meaning "one stable state". his type of circuit
is ideal for use in a "push to operate" system for a model displayed at exhibitions. A
visitor can push a button to start a model's mechanism moving, and the mechanism will
automatically switch off after a set time.

http://www.555-timer-circuits.com/operating-modes.html

21

Bistable Mode (or Schmitt Trigger):

A Bistable Mode or what is sometimes called a Schmitt Trigger, has two stable states,
high and low. Taking the Trigger input low makes the output of the circuit go into the
high state. Taking the Reset input low makes the output of the circuit go into the low
state. This type of circuit is ideal for use in an automated model railway system where the
train is required to run back and forth over the same piece of track. A push button (or
reed switch with a magnet on the underside of the train) would be placed at each end of
the track so that when one is hit by the train, it will either trigger or reset the bistable. The
output of the 555 would control a DPDT relay which would be wired as a reversing
switch to reverse the direction of current to the track, thereby reversing the direction of
the train.

http://www.555-timer-circuits.com/operating-modes.html
http://www.555-timer-circuits.com/schmitt-trigger.html

22

FLIP FLOP OPERATION:

The block diagram of a 555 timer is shown in the above figure. A 555 timer has two
comparators, which are basically 2 op-amps), an R-S flip-flop, two transistors and a
resistive network.

 Resistive network consists of three equal resistors and acts as a voltage divider.
 Comparator 1 compares threshold voltage with a reference voltage + 2/3 VCC volts.
 Comparator 2 compares the trigger voltage with a reference voltage + 1/3 VCC volts.
Output of both the comparators is supplied to the flip-flop. Flip-flop assumes its state
according to the output of the two comparators. One of the two transistors is a discharge
transistor of which collector is connected topin 7. This transistor saturates or cuts-off
according to the output state of the flip-flop. The saturated transistor provides a discharge

23

path to a capacitor connected externally. Base of another transistor is connected to a reset
terminal. A pulse applied to this terminal resets the whole timer irrespective of any input.

OBSERVATIONS:

Draw here the output wave form obtained from your designed circuit.

RESULT:

The circuits were implemented and the required waveforms were observed on an
oscilloscope.

24

LAB NO.8
OBJECTIVE : To implement a two bit gray counter and a two bit
binary counter using J K flip flops.

2 BIT GRAY COUNTER:

OBSERVATIONS:

Clk Q1 Qo
1↑
1↓
2↑
2↓

2 BIT BINARY COUNTER:

25

OBSERVATIONS:

Clk Q1 Qo
1↑
2↑
3↑
4↑
RESULT:

What difference you observed between the two counter outputs?

26

LAB NO.09

OBJECTIVE: To design a combinational circuit and implement it
with multiplexers. To use a demultiplexer to implement a multiple
output combinational circuit from the same input variables.

APPARATUS:
• IC type 7404 HEX inverter
• IC type 7408 quad 2-input AND gate
• IC type 74151 8x1 multiplexer (1)
• IC type 74153 dual 4x1 multiplexer (2)
• IC type 7446 BCD-to-Seven-Segment decoder (1)
• Resistance network (1)
• Seven-Segment Display (1)

BRIEF OVERVIEW:

74151 is a 8 line-to-1 line multiplexer. It has the schematic representation shown in Fig 1.
Selection lines S2, S1 and S0 select the particular input to be multiplexed and applied to
the output.
Strobe S acts as an enable signal. If strobe =1, the chip 74151 is disabled and
output y = 0. If strobe = 0 then the chip 74151 is enabled and functions as a
Multiplexer. Table 1 shows the multiplex function of 74151 in terms of select lines.

Fig.1 IC type 74151 Multiplexer 8×1

27

74153 is a dual 4 line-to-1 line multiplexer. It has the schematic representation shown
in Fig 2. Selection lines S1 and S0 select the particular input to be multiplexed and
applied to the output IY{1 = 1, 2}.
Each of the strobe signals IG {I = 1, 2} acts as an enable signal for the corresponding
multiplexer.

Table 2. shows the multiplex function of 74153 in terms of select lines. Note that each
of the on-chip multiplexers act independently from the other, while sharing the same
select lines S1 and S0.

Fig.2 Pinout of 74153

IC 7446 is a BCD to seven segment decoder driver. It is used to convert the

28

Combinational circuit outputs in BCD forms into 7 segment digits for the 7 segment
LED display units.

PROCEDURE:

Part I: Parity Generator:
a) Design a parity generator by using a 74151 multiplexer. Parity is an extra bit attached
to a code to check that the code has been received correctly. Odd parity bit means that the
number of 1’s in the code including the parity bit is an odd number. Fill the output
column of the truth table in Table 2 for a 5-bit code in which four of the bits (A,B,C,D)
represents the information to be sent and fifth bit (x), represents the parity bit. The
required parity is an odd parity.
The inputs B,C and D correspond to the select inputs of 74151. Complete the truth table
in Table 3 by filling in the last column with 0,1,A or A’.

b) Simulate the circuit using proteus , use 74-151 multiplexer and Binary switches for
inputs and Binary Probes for outputs. The 74151 has one output for Y and another
inverted output W. Use A and A’ for providing values for inputs 0-7. The internal values
“A, B, C” are used for selection inputs B,C, and D. Simulate the circuit and test each
input combination filling in the table shown below. In the Lab connect the circuit and
verify the operations. Connect an LED to the multiplexer output so that it represents the
parity bit which lights any time when the four bits input have even parity.

29

Part 2: Vote Counter:
A committee is composed of a chairman (C), a senior member (S), and a member (M).
The rules of the committee state that:
• The vote of the member (M) will be counted as 2 votes
• The vote of the senior member will be counted as 3 votes.
• The vote of the chairman will be counted as 5 votes.
Each of these persons has a switch to close (“l”) when voting yes and to open (“0”)
when voting no.
It is necessary to design a circuit that displays the total number of votes for each issue.
Use a seven segment display and a decoder to display the required number.
If all members vote no for an issue the display should be blank. (Recall from Experiment
#5, that a binary input 15 into the 7446 blanks all seven segments).
If all members vote yes for an issue, the display should be 0. Otherwise the display shows
a decimal number equal to the number of 'yes' votes. Use two 74153 units, which include
four multiplexers to design the combinational circuit that converts the inputs from the
members’ switch to the BCD digit for the 7446.
In Proteus use +5V for Logic 1 and ground for Logic 0 and use switches for C, S,and M.
Use two chips 74153 and one decoder 7446 verify your design and get a copy of your
circuit with the pin numbers to Lab so that you could connect the hardware in exactly the
same way.

OBSERVATIONS:

RESULT:

30

Lab N0.10

OBJECTIVE : To construct and study the operations of the following
circuits:

 RS and Clocked RS Flip-Flop
 D Flip-Flop

OVERVIEW:

So far you have encountered with combinatorial logic, i.e. circuits for which the output
depends only on the inputs. In many instances it is desirable to have the next output
depending on the current output. A simple example is a counter, where the next number
to be output is determined by the current number stored. Circuits that remember their
current output or state are often called sequential logic circuits. Clearly, sequential logic
requires the ability to store the current state. In other words, memory is required by
sequential logic circuits, which can be created with boolean gates. If you arrange the
gates correctly, they will remember an input value. This simple concept is the basis of
RAM (random access memory) in computers, and also makes it possible to create a wide
variety of other useful circuits.

Memory relies on a concept called feedback. That is, the output of a gate is fed
back into the input. The simplest possible feedback circuit using two inverters is shown
below (Fig.1):

Fig.1: Simplest realization of feedback circuit

If you follow the feedback path, you can see that if Q happens to be 1 (or 0), it will
always be 1 (or 0) . Since it's nice to be able to control the circuits we create, this one
doesn't have much use -- but it does let you see how feedback works. It turns out that in
"real" sequential circuits, you can actually use this sort of simple inverter feedback
approach. The memory elements in these circuits are called flip-flops. A flip-flop circuit
has two outputs, one for the normal value and one for the complement value of the stored
bit. Binary information can enter a flip-flop in a variety of ways and gives rise to
different types of flip-flops.

RS Flip-Flop

RS flip-flop is the simplest possible memory element. It can be constructed from two
NAND gates or two NOR gates. Let us understand the operation of the RS flip-flop using NOR
gates as shown below using the truth table for ‘A NOR B’ gate. The inputs R and S are referred
to as the Reset and Set inputs, respectively. The outputs Q and Q' are complements of each other
and are referred to as the normal and complement outputs, respectively. The binary state of the
flip- flop is taken to be the value of the normal output. When Q=1 and Q'=0, it is in the set state
(or 1-state). When Q=0 and Q'=1, it is in the reset/clear state (or 0-state).

Circuit Diagram:

S=1 and R=0: The output of the bottom NOR gate is equal to zero, Q'=0. Hence both inputs to
the top NOR gate are equal to 0, thus, Q=1. Hence, the input combination S=1 and R=0 leads to
the flip-flop being set to Q=1.
S=0 and R=1: Similar to the arguments above, the outputs become Q=0 and Q'=1. We say that
the flip-flop is reset.
S=0 and R=0: Assume the flip-flop was previously in set (S=1 and R=0) condition. Now
changing S to 0 results Q' still at 0 and Q=1. Similarly, when the flip-flop was previously in a
reset state (S=0 and R=1), the outputs do not change. Therefore, with inputs S=0 and R=0, the
flip-flop holds its state.
S=1 and R=1: This condition violates the fact that both outputs are complements of each other

32

since each of them tries to go to 0, which is not a stable configuration. It is impossible to predict
which output will go to 1 and which will stay at 0. In normal operation this condition must be
avoided by making sure that 1's are not applied to both inputs simultaneously, thus making it one
of the main disadvantages of RS flip-flop.

All the above conditions are summarized in the characteristic table below:

Characteristic Table:

R S Q Q' Comment 0 0

Q Q' Hold state 0 1 1 0

 Set

1 0 0 1 Reset

1 1 ? ? Indeterminate

Debounce circuit

An elementary example using this flip-flop is the debounce circuit. Suppose a piece of
electronics is to change state under the action of a mechanical switch. When this switch is moved
from position S to R (S=0, R=1), the contacts make and break several times at R before settling
to good contact. It is desirable that the electronics should respond to the first contact and then
remain stable, rather than switching back and forth as the circuit makes and breaks. This is
achieved by RS flip-flop which is reset to Q=0 by the first signal R=1 and remains in a fixed
state until the switch is moved back to position S, when the signal S=1 sets the flip-flop to Q=1.

Gated or Clocked RS Flip-Flop

It is sometimes desirable in sequential logic circuits to have a bistable RS flip-flop that
only changes state when certain conditions are met regardless of the condition of either the Set or
the Reset inputs. By connecting a 2-input AND gate in series with each input terminal of the RS
NOR Flip-flop a Gated RS Flip-flop can be created. This extra conditional input is called an
"Enable" input and is given the prefix of "EN" as shown below. When the Enable input "EN" =
0, the outputs of the two AND gates are also at logic level 0, (AND Gate principles) regardless of
the condition of the two inputs S and R, latching the two outputs Q and Q’ into their last known
state. When the enable input "EN" = 1, the circuit responds as a normal RS bistable flip-flop with
the two AND gates becoming transparent to the Set and Reset signals. This Enable input can also
be connected to a clock timing signal adding clock synchronisation to the flip-flop creating what
is sometimes called a "Clocked SR Flip-flop".

So a Gated/Clocked RS Flip- flop operates as a standard bistable latch but the outputs
are only activated when a logic "1" is applied to its EN input and deactivated by a logic "0". The
property of this flip-flop is summarized in its characteristic table where Qn
is the logic state of the previous output and Qn+1 is that of the next output and the clock input

33

being at logic 1 for all the R and S input combinations.

Circuit Diagram:

EN/Clock pulse

Characteristic Table:

 Qn R S Qn+1

 0 0 0 0 (Hold)

 0 1 0 0

 0 0 1 1

 0 1 1 Indeterminate

 1 0 0 1 (Hold)

 1 1 0 0

 1 0 1 1

 1 1 1 Indeterminate

D FLIP-FLOP

An RS flip-flop is rarely used in actual sequential logic because of its undefined outputs for
inputs R= S= 1. It can be modified to form a more useful circuit called D flip-flop, where D
stands for data. The D flip-flop has only a single data input D as shown in the circuit diagram.
That data input is connected to the S input of an RS flip-flop, while the inverse of D is connected
to the R input. To allow the flip-flop to be in a holding state, a D-flip flop has a second input
called Enable, EN. The Enable-input is AND-ed with the D-input.

When EN=0, irrespective of D-input, the R = S = 0 and the state is held.
When EN= 1, the S input of the RS flip-flop equals the D input and R is the inverse of D. Hence,
output Q follows D, when EN= 1. When EN returns to 0, the most recent input D is
‘remembered'.

34

The circuit operation is summarized in the characteristic table for EN=1.

Circuit Diagram:

Characteristic Table:

Procedure:

 Assemble the circuits one after another on your breadboard as per the circuit diagrams.
Circuit diagrams given here do not show connections to power supply and LEDs
assuming that you are already familiar with it from your previous lab experience.

 Connect the ICs properly to power supply (pin 14) and ground (pin 7) following the
schematics for ICs given above.

 Using dip switch and resistors, facilitate all possible combinations of inputs from the
power supply. Use the switch also to facilitate pulse input to the circuit.

 Turn on power to your experimental circuit.
 For each input combination, note the logic state of the normal and complementary

outputs as indicated by the LEDs (ON = 1; OFF = 0), and record the results in a table.
 Compare your results with the characteristic tables.

Qn D Qn+1

0 0 0

0 1 1

1 0 0

1 1 1

35

 When you are done, turn off the power to your experimental circuit.

Observations:

Table For RS FF: ___

Table For Gated RS FF: ____

Table For D FF: _____

Precautions:

 Watch out for loose connections.
 While changing the input condition keep the dip switch well pressed

LAB NO.11

36

OBJECTIVE : To construct and study the operations of the following circuits:

 JK and Master-Slave JK Flip-Flop
 T Flip-Flop

OVERVIEW:
So far you have encountered with combinatorial logic, i.e. circuits for which the output depends
only on the inputs. In many instances it is desirable to have the next output depending on the
current output. A simple example is a counter, where the next number to be output is determined
by the current number stored. Circuits that remember their current output or state are often called
sequential logic circuits. Clearly, sequential logic requires the ability to store the current state. In
other words, memory is required by sequential logic circuits, which can be created with boolean
gates. If you arrange the gates correctly, they will remember an input value. This simple concept
is the basis of RAM (random access memory) in computers, and also makes it possible to create
a wide variety of other useful circuits.

Memory relies on a concept called feedback. That is, the output of a gate is fed back into
the input. The simplest possible feedback circuit using two inverters is shown below (Fig.1):

Fig.1: Simplest realization of feedback circuit

If you follow the feedback path, you can see that if Q happens to be 1 (or 0), it will always be 1
(or 0) . Since it's nice to be able to control the circuits we create, this one doesn't have much use -
- but it does let you see how feedback works. It turns out that in "real" sequential circuits, you
can actually use this sort of simple inverter feedback approach. The memory elements in these
circuits are called flip-flops. A flip-flop circuit has two outputs, one for the normal value and one
for the complement value of the stored bit. Binary information can enter a flip-flop in a variety of
ways and gives rise to different types of flip-flops.

JK FLIP-FLOP:

The JK flip flop (JK means Jack Kilby, a Texas instrument engineer, who invented it) is the
most versatile flip-flop, and the most commonly used flip flop. Like the RS flip-flop, it has two
data inputs, J and K, and an EN/clock pulse input (CP). Note that in the following circuit
diagram NAND gates are used instead of NOR gates. It has no undefined states, however. The
fundamental difference of this device is the feedback paths to the AND gates of the input, i.e. Q is
AND-ed with K and CP and Q’ with J and CP.

37

The JK flip-flop has the following characteristics:

If one input (J or K) is at logic 0, and the other is at logic 1, then the output is set or reset
(by J and K respectively), just like the RS flip-flop.
If both inputs are 0, then it remains in the same state as it was before the clock pulse
occurred; again like the RS flip flop. CP has no effect on the output.
If both inputs are high, however the flip-flop changes state whenever a clock pulse
occurs; i.e., the clock pulse toggles the flip-flop again and again until the CP goes back to
0 as shown in the shaded rows of the characteristic table above. Since this condition is
undesirable, it should be eliminated by an improvised form of this flip-flop as discussed
in the next section.

MASTER-SLAVE JK FLIP-FLOP:

Although JK flip-flop is an improvement on the clocked SR flip-flop it still suffers from
timing problems called "race" if the output Q changes state before the timing pulse of the clock
input has time to go "OFF", so the timing pulse period (T) must be kept as short as possible (high
frequency). As this is sometimes not possible with modern TTL IC's the much improved Master-
Slave J-K Flip-Flop was developed. This eliminates all the timing problems by using two SR
flip-flops connected together in series, one for the "Master" circuit, which triggers on the leading
edge of the clock pulse and the other, the "Slave" circuit, which triggers on the falling edge of
the clock pulse.

The master-slave JK flip flop consists of two flip flops arranged so that when the clock
pulse enables the first, or master, it disables the second, or slave. When the clock changes state
again (i.e., on its falling edge) the output of the master latch is transferred to the slave latch.
Again, toggling is accomplished by the connection of the output with the input AND gates.

Circuit Diagram:

 Master latch Slave Latch

38

Characteristic Table:

T FLIP-FLOP:

The T flip-flop is a single input version of the JK flip-flop. The T flip-flop is obtained
from the JK type if both inputs are tied together.

Circuit Diagram:

Same as Master-Slave JK flip-flop with J=K=1

The toggle, or T, flip-flop is a bistable device, where the output of the T flip-flop "toggles"
with each clock pulse.

Till CP=0, the output is in hold state (three input AND gate principle).
When CP=1, for T=0, previous output is memorized by the circuit. When T=1 along with the
clock pulse, the output toggles from the previous value as given in the characteristic table
below.

Characteristic Table:

Qn T Qn+1
0 0 0
0 1 1
1 0 1
1 1 0

Procedure:

39

 Assemble the circuits one after another on your breadboard as per the circuit diagrams.

Circuit diagrams given here do not show connections to power supply and LEDs
assuming that you are already familiar with it from your previous lab experience.

 Connect the ICs properly to power supply (pin 14) and ground (pin 7) following the
schematics for ICs given above.

 Using dip switch and resistors, facilitate all possible combinations of inputs from the
power supply. Use the switch also to facilitate pulse input to the circuit.

 Turn on power to your experimental circuit.
 For each input combination, note the logic state of the normal and complementary

outputs as indicated by the LEDs (ON = 1; OFF = 0), and record the results in a table.
 Compare your results with the characteristic tables.
 When you are done, turn off the power to your experimental circuit.

Observations:

Table For JK FF: _____

Table For Master-Slave JK FF:______

Table For T FF: _____

Precautions:

 Watch out for loose connections.
 While changing the input condition keep the dip switch well pressed

40

LAB NO.12

Objective:
1) Getting familiar with Verilog HDL for digital design.
2) To simulate and verify the verilog code on ModelSim Software.

Equipment Required
• Modelsim software installed PCs

 Procedure
1. Open the ModelSim software.

2. Create a new project by File => New => Project from the Main window.

3. A “Create Project” window appears as shown in figure below. Select a suitable name
for your project; leave the Default Library Name to work.

4. After project name, an Add items to the Project dialog pops out as shown in figure

below.

41

5. From the “Add items to the Project” dialog click on Create a new file. If you have
closed the “Add items to the Project” dialog, then select Project => Add to Project
=> New File from the main window.

6. A Create Project File dialog pops out. Select an appropriate file name for the file you
want to add (the name of file must be same as you write in Step 4); choose Verilog as
the add file as type option and Top level as the Folder option (see figure below) and
then click on OK.

7. On the workspace section of the Main Window, double-click on the file you have just
created (VLSI.v in our case).

8. Type verilog code of the given task in the new window. For example here we use a
simple AND gate code.

42

9. Save your code.

10. In workspace window do right click on project name (i.e. VLSI) select Compile =>
Compile All. A message “ Compile of VLSI.v was successful” will appear in message
window.

11. For simulating the design click on Simulation => Start Simulation in main window,
simulation environment will appears as shown in figure below.

12. Click on the (+) sign next to the work library. You should see the name of the entity of

the code that we have just compiled “VLSI” select your desired file.

43

13. Locate the signals window and select the signals that you want to monitor for simulation.
For this example of AND gate, select all signals as shown figure below.

14. Drag the above signals by selecting all then right click and select Add => To Wave
=> Selected items to the wave window.

15. Now we are ready to simulate our design. For this purpose we will change the values of

inputs (i.e. a and b in above example of AND gate) by right click on input and select
Force and write either ‘0’ or ‘1’ in value box and repeat same step for changing the
value of other inputs.

44

16. Click Run button in main window tool bar and can see the changes in the both the
wave and objects windows.

Results & Observations

45

Lab No.13

Objective
• To understand 4 to 1 MUX working principle
• To understand Quartus-II Software for Development of Verilog HDL Codes.
• To implement and Test 4 to 1 MUX on Verilog HDL by

o Gate Level Modeling
o Data Flow Modeling
o Behavioral Modeling

Equipment Required
• Quartus-II Modelsim Installed PCs

Theory
A multiplexer (MUX) is a digital switch which connects data from one of “n” inputs to a
single output. A number of “Select Inputs” determine which data input is connected to the
output. The Block Diagram of MUX with “n” data inputs and “s” select lines is shown in
figure below:

MUX acts like a digitally controlled multi-position switch where the binary code applied to
the select inputs controls the input source that will be switched on to the output. At any given
point of time only one input gets selected and is connected to output, based on the select
input signal. Input can be single bit or multi bits in nature. Following figure shows n to 1
MUX, handling “B” bits of each input and select them to “B” bits output.

46

A 4 to 1 MUX is shown in figure below. There are four input lines, I0 to I3, and two
selections lines, S0 and S1, are decoded to select a particular input to appear at output.

The truth table for the 4:1 MUX is given as:

S1 S0 Output
0 0 I0
0 1 I1
1 0 I2
1 1 I3

47

Procedure
1. Understand given Gate level modeling code.
2. Create new Quartus-II project for writing the code.
3. Open new Verilog file and write given code in it.
4. Include Verilog file in your project and compile your project.
5. Open Modelsim and simulate your project and verify results.
6. Understand given Data flow modeling code.
7. Repeat steps 3 to 5.
8. Understand given Behavioral Modeling code.
9. Repeat steps 3 to 5.

Gate Level Modeling
// Module 4-to-1 multiplexer using gate level modeling.
module mux4_to_1 (output out,

input i0, i1, i2, i3,
input s1, s0);

// Internal wire declarations
wire s1n, s0n;
wire y0, y1, y2, y3;

// Gate instantiations

// Create s1n and s0n signals
not (s1n, s1);
not (s0n, s0);

// 3-input and gates instantiated
and (y0, i0, s1n, s0n);
and (y1, i1, s1n, s0);

and (y2, i2, s1, s0n);

and (y3, i3, s1, s0);

// 4-input or gate instantiated
or (out, y0, y1, y2, y3);
endmodule

Data Flow Modeling

// Module 4-to-1 multiplexer using data-flow modeling

48

module mux4_to_1 (output out,
input i0, i1, i2, i3,

input s1, s0);

//Logic equation for out

assign out = (~s1 & ~s0 & i0)|

(~s1 & s0 & i1) |
(s1 & ~s0 & i2) |
(s1 & s0 & i3) ;

endmodule

Behavioral Modeling
// Module 4-to-1 multiplexer using behavioral modeling
module mux4_to_1 (output out,

input i0, i1, i2, i3,
input s1, s0);

always @(s1 or s0 or i0 or i1 or i2 or i3)

begin

case ({s1, s0})
2'b00: out = i0;
2'b01: out = i1;
2'b10: out = i2;
2'b11: out = i3;
default: out = 1'bx;
endcase

end
endmodule

Results

49

Lab No.14

Objective
• To understand Quartus-II Software for Development of Verilog HDL codes.
• To implement and test Verilog HDL code of a given function.

Equipment Required
• Quartus II software installed PCs
• ALTERA DE2 Board

 Procedure
1. Open the Quartus II software.
2. Create a new project by selecting “Create a New Project (New Project Wizard)”

as shown in Figure below.

3. Select a suitable name for your new directory (or you can use the existing one) and
also the name of the project and click on next option.

4. After creating new directory and project, create a new file by selecting File => New
and select Verilog HDL File type as shown in Figure below.

50

5. A command window will appear. Write your program and save it with the same
name as given in module command. (Make sure that file should be saved in the
same project directory mentioned in step 2)

6. Now compile your program by selecting Processing => start compilation.
7. After completion of compilation a message will appear “full compilation was

successful”.
8. To verify your verilog code on ALTERA board, assign suitable pins/switches/LEDs

to your input/output terminals by Assignments => Pin Planner. A pin planner
window will appear.

Pin assignments

Start I/O Assignment
Analysis

51

9. Assign switches and LEDs to all input and output terminals respectively and start
I/O assignment analysis as shown in above figure. The location of ALTERA DE2
board can be selected from “ALTERA DE2 user manual”.

10. After I/O assignment analysis, now code is ready to be dumped in ALTERA DE2

board. Select Tools => Programmer and after selection of USB blaster option
select Start. A 100% completion message will appear, when program is completely
dump.

11. Now, you can test your program on ALTERA DE2 board.

Results and Observations

	OBJECTIVE: To become familiar with basic logic gates and their functions.
	BRIEF OVERVIEW:
	Common Gate ICs:
	1) Power up the 2-input AND , OR and NOT TTl ICs on a bread board.
	2) Apply inputs using push-to-on/off switches and observe the output via LEDs.
	3) Fill the Table provided in the observation area.
	OBSERVATIONS:
	RESULT:
	LAB NO.2
	OBJECTIVE: To implement a Half adder circuit.
	BRIEF OVERVIEW:
	Objective:
	Equipment Required
	Procedure
	Results & Observations

	Objective
	Equipment Required
	Theory
	Procedure
	Gate Level Modeling
	Data Flow Modeling
	Behavioral Modeling
	Results
	Objective
	Equipment Required
	Procedure
	Results and Observations

