PRACTICAL WORK BOOK
For Academic Session

Semester

DIGITAL LOGIC DESIGN
(TC-201)

For

SE (TC)

Name:

Roll Number:

Batch:

Department:

Year:

Department of Electronic Engineering

NED University of Engineering & Technology, Karachi

LABORATORY WORK BOOK

For The Course

TC-201 DIGITAL LOGIC DESIGN

Prepared By:
Mr. Rizwan Aslam Butt (Lecturer)

Reviewed By:
Dr. Irfan Ahmed (Associate Professor)

Approved By:
The Board of Studies of Department of Electronic Engineering

INTRODUCTION

Digital Logic Design Practical Workbook covers those practical that
are very knowledgeable and quite beneficial in grasping the core
objective of the subject. These practical solidify the theoretical and
practical concepts that are very essential for the engineering students.

This work book comprise of practical covering the topics of Digital
Logic Design that are arranged on modern concepts. Above all this
workbook contains a relevant theory about the Lab session.

CONTENTS

Lab
No.

DATE

Experiment

Page
No.

Remarks/
Signature

To become familiar with basic logic gates and their
functions.

To implement a Half adder circuit.

To implement a Full adder circuit.

To learn the operation of Encoder and Decoder by
implementing a counter using seven segment display
and keypad.

To learn programming with 8051 microcontrollers
using keil embedded C environment. Task#1: To write
a code on Keil using 8051 microcontroller for blinking
LEDs and simulate it on proteus.

Task#2: Write an 8051 based code to design a
counting system for a security gate. The count should
be displayed on a seven segment.

To blink LEDs connected to port A with a delay of
500 millisec using PIC 16F877A.

To design an Astable multi vibrator using 555 timer
and to understand Flip Flop operation.

To implement a two bit gray counter and a two bit
binary counter using J K flip flops.

To design a combinational circuit and implement it
with multiplexers. To use a demultiplexer to
implement a multiple output combinational circuit
from the same input variables.

10

To construct and study the operations of the following
circuits:

11

To construct and study the operations of the following
circuits:

12

(1) Getting familiar with Verilog HDL for digital
design.

(i1) To simulate and verify the verilog code on
ModelSim Software.

13

(1) To understand 4 to 1 MUX working principle
(i1) To understand ModelSim Software for
Development of Verilog HDL

(iii) To implement and Test 4 to 1 MUX on
[Verilog HDL by

» Gate Level Modeling

» Data Flow Modeling

» Behavioral Modeling

14

(1) To understand Quartus-II Software for
Development of Verilog HDL codes.

(i1) To implement and test Verilog HDL code of a
given function.

(iii) To test the given function program on
ALTERA DE2 board.

LAB NO.1

OBJECTIVE: To become familiar with basic logic gates and their
functions.

BRIEF OVERVIEW:

A logic gate is an elementary building block of a digital circuit. Most logic gates have
two inputs and one output. At any given moment, every terminal is in one of the
two binary conditions low (0) or high (1), represented by different voltage levels. The
logic state of a terminal can, and generally does, change often, as the circuit processes
data. In most logic gates, the low state is approximately zero volts (0 V), while the high
state is approximately five volts positive (+5 V).

There are seven basic logic gates: AND, OR, XOR, NOT, NAND, NOR, and XNOR.
AND GATE:

The AND gate is so named because, if 0 is called "false" and 1 is called "true," the gate
acts in the same way as the logical "and" operator. The following illustration and table
show the circuit symbol and logic combinations for an AND gate. (In the symbol, the
input terminals are at left and the output terminal is at right.) The output is "true" when

both inputs are "true." Otherwise, the output is "false."
AND gate
Input 1Input 2| Output
0 0 0
0 1 0
1 0 0
1 1 1

OR GATE:

http://searchcio-midmarket.techtarget.com/definition/digital
http://searchcio-midmarket.techtarget.com/definition/circuit
http://searchcio-midmarket.techtarget.com/definition/binary

The OR gate gets its name from the fact that it behaves after the fashion of the logical
inclusive "or." The output is "true" if either or both of the inputs are "true." If both inputs
are "false," then the output is "false."

0 >

OR gate
Input 1[Input 2OQutput
0 0 0
0 1 1
1 0 1
1 1 1

XOR GATE:

The XOR (exclusive-OR) gate acts in the same way as the logical "either/or." The output
is "true" if either, but not both, of the inputs are "true." The output is "false" if both inputs
are "false" or if both inputs are "true." Another way of looking at this circuit is to observe
that the output is 1 if the inputs are different, but 0 if the inputs are the same.

= >

XOR gate
Input 1{Input 2|Output
0 0 0
0 1 1
1 0 1
1 1 0

NOT GATE:

A logical inverter, sometimes called a NOT gate to differentiate it from other types of
electronic inverter devices, has only one input. It reverses the logic state.

— >

Inverter or NOT gate
Input | Output

1 0

NAND GATE:

The NAND gate operates as an AND gate followed by a NOT gate. It acts in the manner
of the logical operation "and" followed by negation. The output is "false" if both inputs
are "true." Otherwise, the output is "true."

=

NAND gate
Input 1[Input 2OQutput
0 0 1
0 1 1
1 0 1
1 1 0

NOR GATE:

The NOR gate is a combination OR gate followed by an inverter. Its output is "true" if
both inputs are "false." Otherwise, the output is "false."

o

NOR gate
Input 1jInput 2|Output
0 0 1
0 1 0
1 0 0
1 1 0

XNOR GATE:

The XNOR (exclusive-NOR) gate is a combination XOR gate followed by an inverter. Its
output is "true" if the inputs are the same and "false" if the inputs are different.

—)

XNOR gate
Input 1[Input 2OQutput
0 0 1
0 1 0
1 0 0
1 1 1

Using combinations of logic gates, complex operations can be performed. In theory, there
is no limit to the number of gates that can be arrayed together in a single device. But in
practice, there is a limit to the number of gates that can be packed into a given physical
space. Arrays of logic gates are found in digital integrated circuits (ICs). As IC
technology advances, the required physical volume for each individual logic gate
decreases and digital devices of the same or smaller size become capable of performing
ever-more-complicated operations at ever-increasing speeds.

Common Gate ICs:

Part

Description
number p

quad 2-input
7400 NAND gate

quad 2-input
7402 NOR gate

quad 2-input
7408 AND gate

triple 3-input
7410 NAND gate

quad 2-input
7432 OR gate

quad 2-input
7486 XOR gate

PROCEDURE:

1) Power up the 2-input AND , OR and NOT TTI ICs on a bread board.

2) Apply inputs using push-to-on/off switches and observe the output via
LEDs.

3) Fill the Table provided in the observation area.

OBSERVATIONS:
A B AB A+B A
0 0
0 1
1 0

http://en.wikipedia.org/wiki/NAND_gate
http://en.wikipedia.org/wiki/NAND_gate
http://en.wikipedia.org/wiki/NOR_gate
http://en.wikipedia.org/wiki/NOR_gate
http://en.wikipedia.org/wiki/AND_gate
http://en.wikipedia.org/wiki/AND_gate
http://en.wikipedia.org/wiki/OR_gate
http://en.wikipedia.org/wiki/OR_gate
http://en.wikipedia.org/wiki/XOR_gate
http://en.wikipedia.org/wiki/XOR_gate

RESULT:

LAB NO.2

OBJECTIVE: To implement a Half adder circuit.

BRIEF OVERVIEW:

To understand what is a half adder you need to know what is an adder first. Adder circuit
is a combinational digital circuit that is used for adding two numbers. A typical adder
circuit produces a sum bit (denoted by S) and a carry bit (denoted by C) as the output.
Typically adders are realized for adding binary numbers but they can be also realized for
adding other formats like BCD (binary coded decimal, XS-3 etc. Besides addition, adder
circuits can be used for a lot of other applications in digital electronics like address
decoding, table index calculation etc. Adder circuits are of two types: Half adder ad Full
adder.

Half adder is a combinational arithmetic circuit that adds two numbers and produces a
sum bit (S) and carry bit (C) as the output. If A and B are the input bits, then sum bit (S)
is the X-OR of A and B and the carry bit (C) will be the AND of A and B. From this it is
clear that a half adder circuit can be easily constructed using one X-OR gate and one
AND gate. Half adder is the simplest of all adder circuit, but it has a major
disadvantage. The half adder can add only two input bits (A and B) and has nothing to
do with the carry if there is any in the input. So if the input to a half adder have a carry,
then it will be neglected it and adds only the A and B bits. That means the binary addition
process is not complete and that’s why it is called a half adder. The truth table, schematic
representation and XOR//AND realization of a half adder are shown in the figure below.

TRUTH TABLE:

Inputs Cutputs
A B 3 C
A — — 5
o o0 o 1 bit
1 o | 1 5 half adder
B— —C
0 1 1 0
1 g ; Schematic
Truth table
OBSERVATIONS:
Carry
A B Sum Out
0 0
0 1
1 0
1 1
RESULT:

A0OR

D

Realization

The half adder circuit was implemented on a bread board using ICs.

LAB NO.3

Objective: To implement a Full adder circuit.

BRIEF OVERVIEW:

A full adder adds binary numbers and accounts for values carried in as well as out. A
one-bit full adder adds three one-bit numbers, often written as A, B, and Cj,;A and B are
the operands, and Cj, is a bit carried in from the next less significant stage. The full-adder
is usually a component in a cascade of adders, which add 8, 16, 32, etc. binary numbers.
The circuit produces a two-bit output, output carry and sum typically represented by the

signals Cg, and S.
TRUTH TABLE:
Input Input |Carry | Sum Carry
bit for | bit for [bit bit bit
number | number| input | output | output
a B | Sw | = | Cour
0 0 Q 0 Q
0 0 1 1 0
0 1 0 1 0
0 1 1 0 1
1 0 0 1 0
1 0 1 0 1
1 1 0 0 1
1 1 1 1 1
euals

=

1] m—

with
IN

FULL

ADDER

Hotw do ol

Jnake ane’?

10

ci.' tlj °

Cout

OBSERVATIONS:

The required outputs observed as described in the truth table for sum and
carry out are as follows.

Carry Carry
A B In Sum Out
0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

RESULT:

The Full Adder circuit was implemented using 74LS83 discrete IC and the
outputs of sum and carry out were observed on Led’s.

12

LAB NO4

OBJECTIVE: To learn the operation of Encoder and Decoder by
implementing a counter using seven segment display and keypad.

CIRCUIT DIAGRAM:
— [} m U1
. AEEEET
(1) @) @) —4 "
] : g i
—1ds Wk A
{8 2 a1 oL L g
@ @ @ :n—icg % 2?4 é B
— 43 44 Bimeo
Q0oL &
TAST .

<TEAT> T4L547
I7 @ @ @ <TEAT >

BRIEF OVERVIEW:

An encoder converts a non binary code to binary code like decimal numbers
to binary. These are often needed as the human machine interface like a
keypad generates such non-binary codes. But to apply digital operations on
these codes it is often needed to convert these codes to binary language.

Decoders on the other hand are the inverse function of the encoders. We
need these again to represent the processed information in an human
understandable form like on seven segment displays.

OBSERVATIONS:

Press all buttons on the keyboard and record the outputs observed on the
seven segment display.

13

RESULT:

The above circuit was implemented using 74L.S147 encoder and a 74LS47
BCD to seven segment decoder.

14

LAB NO. 5

OBJECTIVE : To learn programming with 8051 microcontrollers using

keil environment.

BRIEF OVERVIEW:

Microcontroller is a programmable digital logic device that has on-board
micro-processor, RAM, ROM and many other peripheral functions available
on a single ship. Famous general propose microcontroller families are 8051,
PIC and AVR microcontrollers. These microcontrollers can be programmed
in Assembly, C and Basic languages via specific development environment.
The most famous environment for 8051 family program development is Keil
uVision. It has provision of programming both in C and Assembly language.

Task#1:

To write a code on Keil using 8051 microcontroller for blinking led’s
and simulate it on proteus.

Program:

/*To blink Leds using Microcontroller*/
#include <REG51.h>

void delay(unsigned int sec)

{

Unsigned int 1,j;

for (1=0;1<sec;1++)

for(j=0;j<1500;j++);

b

void main()

{

15

int 1i=0;
P2=0x00;
while(1)

{
P2=0xFF;
delay(100);
P2=0x00;
delay(100);
b

b

Simulation in Proteus:

Implement the following circuit in proteus and burn the above code in it.

%]
[L1
18 wmat PO.0/00 (=20
p PO 14800 ot
A 1~ PO 2402 |l
- 2 CRYST 18 Lorais P 340G | oD
J <TEAT> PO 440 oS
n | . P 540 | ot
' i
e
i3p im | B3z
+ B RET P 74ADT
P20 :ﬂ
P21/ |22
P2 1410
o FIEN F2.3/Al (o2t
3 08 AE P2 d4ial2 (220
L L LR FiL5/ALS ooE
B—< P2 G(AM 2L
ik P2.7iAl 28 " 5 "
LTENT> in =il D D._L% Q D
A8 gy P3.0/RvD 1D
_iE | P11 P2 ATHD | =11 LE| BE -R LED-GRERY
3| p1'g P glfm |12 TE g <TE{jg <TELT mTET:
g ALY T
= E P.3NTY (=12
R1 SSiPI4 P34 o1 INNNEE]
B.2K] P15 PEEM e - -
TR R P3 AR 12
%Rz P37RD AL
ATEOCE]
sTEXT:
Task#2:

Write an 8051 based code to design a counting system for a security

gate. The count should be displayed on a seven segment.

Program:

/*Design a security gate to increment the count of persons entering uptil 9

via switch using 8051 microcontroller*/

#include <REGS51.h>

void delay(unsigned int sec)

{
Unsigned int 1,j;

for(i=0;i<sec;i++)

17

for(j=0;j<1500;j++);

}

void main()

{

int 1=0;

P1=0x00; //Declaring input port
while(1)

{

if(P170!=0) //Condition to check whether the switch is pressed or not
{i++;

}

1f(i>9) //To reset the value of count to 0 if increment increases 9
{

1=0;

}

1f(i==0)

{P2=0xCO0;

delay(200);

}

else if(i==1)

{P2=0xF9;

delay(200);

}

18

else if(i==2)
{

P2=0xA4;
delay(200);
b

else if(i==3)
{

P2=0xB0;
delay(200);
b

else if(i==4)
{

P2=0x99;
delay(200);
b

else if(i==5)
{

P2=0x92;
delay(200);
b

else if(i==06)

{
P2=0x82;

19

delay(200);
b

else if(i==7)
{

P2=0xF8;
delay(200);
b

else 1f(i==8)
{

P2=0x80;
delay(200);
b

else if(i==9)
{

P2=0x90;
delay(200);
b

b

b

Simulation in Proteus:

Implement the following circuit in proteus and burn the above code in it.

£

m] L L1
33p| | LY, TR PO.0/ADD (=
PO 14801 [
L ISk A1 = PO.2/A0 (o0
T o CRYSTAL ¥TAL2 e
il TERT> POL4/A04 oo
—| | . PO.5(408 (=22
PO GIADE [
L e 981 paT PO 74807 |2
P20/ =21
P14 (22
P2 24810
& L3 & 282 FEEN P2 3111
B—« e AlE P2 4A12
0 EA PLE/AL (oot
<TL|'EHT> P2 BiAl4 |0
e — 3 P2 74805 | 228
P im =10
P10 A3 /RN il
<2 P Piimo =1L 4
R1 Hm il P2.2INID (oo
8.2k —w P12 P2.2ANT 5%
<TERT: O P14 P340 OH
| P1.5 P35 O
0 P1.G P GAE T
E8 g7 P3.7RD L
11 80051
= <TEAT

RESULT:

Write your achievements and experiences here.

21

Lab No.6

OBJECTIVE: To blink LEDs connected to port A with a delay of 500
millisec using PIC 16F877A.

BRIEF OVERVIEW:

Microcontroller is a programmable digital logic device that has on-boad
micro-processor, RAM, ROM and many other peripheral functions available
on a single ship. Famous general propose microcontroller families are 8051 ,
PIC and AVR microcontrollers.

Program:

void main()

{

TRISB=0;
TRISC=0;
for(;;)

{

PORTB = 0xff;
PORTC = 0xff;
Delay ms(500) ;
PORTB =0 ;
PORTC=0;
Delay ms(500) ;
}

b

22

Proteus Simulation:

CRYSTAL
CAPACITORZ SRV

; PICIBFRTTA

e T 13 TozcicLrm RECVINT
| osccLkouT RA1
TET REZ
I _g_ AADVAND RAZPCM
= 1 aatani RE+
?&APAUTDR ;— RAZA NN EF-HWREF RAS
| RABANIVRER RESPGD
5| RATDE KRG 10T RETIRGD

T | RN R ZOUT
@ d REOTAOSOTAE K
2 | AEwaNsMT RCATI0SHMCCRE
| REAANSTRL ROZCE P
b} I | nemaures RCAE0 KECL
RESISTOR AC W20 VI
— TR H RESE00
) RCETRAEK
ETENT: RETIRIT
19 ROOVREPO
oo RO AR
12 ROZPEFZ
e ROVPEFI
RO WP P4
RADSPEPS
+ RDGPEPS
ROTIPEFT

FTEAT

i - =

H

L1
LED-v ELLO
STEAT:

R}
LED-v ELLOY
<T)

Dz
LED-RED

L

[E]
LED-3REEN
ATEST

Jaululefulefels [oddefuled<| s au|Twe

[¥ird
LED-v ELLON

AT EAT

[]:] (o]
LED-RED LED-OR,
STEST: <TE<T:

i

RESULT:

Write your experiences and achievements here.

23

LAB NO.7

OBJECTIVE: To design an Astable multi vibrator using 555 timer and
to understand Flip Flop operation.

BRIEF OVERVIEW:

555 IC is a monolithic timing circuit that can produce accurate and highly
stable time delays or oscillation. Like other commonly used op-amps, this IC
is also very much reliable, easy to use and cheaper in cost. It has a variety of
applications including monostable and astable multivibrators, de-dc
converters, digital logic probes, waveform generators, analog frequency
meters and tachometers, temperature measurement and control
devices, voltage regulators etc. The timer basically operates in one of the
two modes either as a monostable (one-shot) multivibrator or as an astable
(free-running) multivibrator. The SE 555 is designed for the operating
temperature range from — 55°C to 125° while the NE 555 operates over a
temperature range of 0° to 70°C.

IC PIN CONFIGURATION:
595 TIMER IC
GROUND | 1 Elu,cc
@ DISCHARGE
TRIGGER] 2 7 | DISCHARGE
@ THRESHOLD 555
ouUTPUT| 3 § |THRESHOLD
@ CONTROL VOLTAGE
CONTROL
RESET| 4 2 | VOLTAGE
Top View Of Metal Can Package 8-Pin DIP

WORKING MODES:

The 555 has three main operating modes, Monostable, Astable, and Bistable.

Each mode represents a different type of circuit that has a particular output.
24

http://www.circuitstoday.com/555-timer-as-monostable-multivibrator
http://www.circuitstoday.com/555-timer-as-an-astable-multivibrator
http://www.circuitstoday.com/6-to-15v-dc-to-dc-converter
http://www.circuitstoday.com/6-to-15v-dc-to-dc-converter
http://www.circuitstoday.com/function-generators
http://www.circuitstoday.com/led-bargraph-thermometer
http://www.circuitstoday.com/category/voltage-regulators

Astable mode :

An Astable Circuit has no stable state - hence the name "astable". The output
continually switches state between high and low without any intervention
from the user, called a 'square’ wave. This type of circuit could be used to
give a mechanism intermittent motion by switching a motor on and off at
regular intervals. It can also be used to flash lamps and LEDs, and is useful
as a 'clock’ pulse for other digital ICs and circuits.

R1

R2 6 555 Output

0.1nF

i

] I

Output (pin 3)

Monostable mode :

A Monostable Circuit produces one pulse of a set length in response to a
trigger input such as a push button. The output of the circuit stays in the low
state until there is a trigger input, hence the name "monostable" meaning
"one stable state". his type of circuit is ideal for use in a "push to operate"
system for a model displayed at exhibitions. A visitor can push a button to
start a model's mechanism moving, and the mechanism will automatically
switch off after a set time.

25

http://www.555-timer-circuits.com/operating-modes.html
http://www.555-timer-circuits.com/operating-modes.html

26

* Ui Eger

e ok oiaal eages alsers i Vi
— =
0
Uc A g ~—"to V¢e
- A
e i e e e Viry
—f-f
0 T
to A
——————— Vee
>t
0 T

(b)

Bistable Mode (or Schmitt Trigger):

A Bistable Mode or what is sometimes called a Schmitt Trigger, has two
stable states, high and low. Taking the Trigger input low makes the output of
the circuit go into the high state. Taking the Reset input low makes the
output of the circuit go into the low state. This type of circuit is ideal for use
27

http://www.555-timer-circuits.com/operating-modes.html
http://www.555-timer-circuits.com/schmitt-trigger.html

in an automated model railway system where the train is required to run
back and forth over the same piece of track. A push button (or reed switch
with a magnet on the underside of the train) would be placed at each end of
the track so that when one is hit by the train, it will either trigger or reset the
bistable. The output of the 555 would control a DPDT relay which would be
wired as a reversing switch to reverse the direction of current to the track,
thereby reversing the direction of the train.

Output

b anelfy 0.1nF

Button I

L

gger Button Pressed

| Reset Button Pressed

Output (pin 3)

28

FLIP FLOP OPERATION:
555 TIMER IC BLOCK DIAGRAM

+Veo THRESHOLD

®
R
2 S
® | Ve 1
CONTROL
VOLTAGE s L CUTPUT o
STAGE
—— = » OUTPUT
FLOP POWER
R AMPLIFIER

@ DISCHARGE

< TRIGGER =
INPUT

RESET
WREF

The block diagram of a 555 timer is shown in the above figure. A 555 timer
has two comparators, which are basically 2 op-amps), an R-S flip-flop, two
transistors and a resistive network.

= Resistive network consists of three equal resistors and acts as a voltage
divider.

= Comparator 1 compares threshold voltage with a reference voltage +
2/3 Ve volts.

« Comparator 2 compares the trigger voltage with a reference voltage + 1/3
VCC volts.

Output of both the comparators is supplied to the flip-flop. Flip-flop assumes

its state according to the output of the two comparators. One of the two

transistors is a discharge transistor of which collector is connected topin 7.

This transistor saturates or cuts-off according to the output state of the flip-

flop. The saturated transistor provides a discharge path to a capacitor con-

nected externally. Base of another transistor is connected to a reset terminal.

A pulse applied to this terminal resets the whole timer irrespective of any

mput.

29

OBSERVATIONS:

Draw here the output wave form obtained from your designed circuit.

RESULT:

The circuits were implemented and the required waveforms were observed
on an oscilloscope.

30

LAB NO.8

OBJECTIVE : To implement a two bit gray counter and a two bit
binary counter using J K flip flops.

2 BIT GRAY COUNTER:

HIGH —g

0
r
S

i
s
[

r-\—n--l
C

V'

a

A

0

OBSERVATIONS:

Clk Q1 Qo

17

1]

21

2]

2 BIT BINARY COUNTER:

31

HIGH —g

FF1
b —o 4 o
1 r"l i
cx [l LI e -
0
Ko & - K,
3 CLK 1 2 3 4
) ' | '
L)
: I
Qo (LSB)
Qutputs - [i

@, (MSB)
OBSERVATIONS:
Clk Q1 Qo
11
21
31
41
RESULT:

What difference you observed between the two counter outputs?

32

LAB NO.09

OBJECTIVE: To design a combinational circuit and implement it
with multiplexers. To use a demultiplexer to implement a multiple
output combinational circuit from the same input variables.

APPARATUS:

* IC type 7404 HEX inverter

* IC type 7408 quad 2-input AND gate

* [C type 74151 8x1 multiplexer (1)

* IC type 74153 dual 4x1 multiplexer (2)

* IC type 7446 BCD-to-Seven-Segment decoder (1)
* Resistance network (1)

* Seven-Segment Display (1)

BRIEF OVERVIEW:

74151 is a 8 line-to-1 line multiplexer. It has the schematic representation shown in Fig 1.
Selection lines S2, S1 and SO select the particular input to be multiplexed and applied to
the output.

Strobe S acts as an enable signal. If strobe =1, the chip 74151 is disabled and

output y = 0. If strobe = 0 then the chip 74151 is enabled and functions as a
Multiplexer. Table 1 shows the multiplex function of 74151 in terms of select lines.

Table 1. 14 | s
Strobe | Select Lines | Output Strobe __ ! |g vee GND

S Sg S1 So Y (_4 Do‘

I | x| x| x| o ; vL5 v

0 [olo]o] Do) gl

o oo e gy

0 0 I 1 D3 Input data <i D,

0 1 o] o] D4 4 | Ds

0 1 0 1 D5 13 | Dg

0 1 1 0 D6 12 | D,

0o | 1|1 [1] D7 \ 2%
9‘]0‘ ll‘
_Y_J

Fig.1 IC type 74151 Multiplexer 8x1

33

74153 is a dual 4 line-to-1 line multiplexer. It has the schematic representation shown
in Fig 2. Selection lines S1 and SO select the particular input to be multiplexed and
applied to the output IY {1 =1, 2}.

Each of the strobe signals /G {I =1, 2} acts as an enable signal for the corresponding
multiplexer.

Table 2. shows the multiplex function of 74153 in terms of select lines. Note that each
of the on-chip multiplexers act independently from the other, while sharing the same
select lines S1 and SO.

Table 2
Multiplexer 1 Multiplexer 2
Strobe | Select lines | Output Strobe | Select lines | Output
1G S1 So 1Y 2G Sq So 2Y
1 X X 0 1 X X 0
0 0 0 1Dy 0 0 0 2Dy
0 0 1 1D, 0 0 1 2D,
0 1 0 1D 0 1 0 2D,
0 1 1 1Ds 0 1 1 2D;
16 K 16 | s
V.. GND ‘ s V. GND
Strobe G Strebe: 2 1, G
4
6 1D, MUXI1 10 Iip o MUX2
> ip, vy | b, v |2
Input data < Input data <
4 12
—] Dz DE
3 | 1D; 13 | 1D,
. S1 SD S1 So
2 14‘ 2 14‘
Fig.2 Pinout of 74153

34

IC 7446 is a BCD to seven segment decoder driver. It is used to convert the
Combinational circuit outputs in BCD forms into 7 segment digits for the 7 segment
LED display units.

PROCEDURE:

Part I: Parity Generator:

a) Design a parity generator by using a 74151 multiplexer. Parity is an extra bit attached
to a code to check that the code has been received correctly. Odd parity bit means that the
number of 1’s in the code including the parity bit is an odd number. Fill the output
column of the truth table in Table 2 for a 5-bit code in which four of the bits (A,B,C,D)
represents the information to be sent and fifth bit (x), represents the parity bit. The
required parity is an odd parity.

The inputs B,C and D correspond to the select inputs of 74151. Complete the truth table
in Table 3 by filling in the last column with 0,1,A or A’.

b) Simulate the circuit using proteus , use 74-151 multiplexer and Binary switches for
inputs and Binary Probes for outputs. The 74151 has one output for Y and another
inverted output W. Use A and A’ for providing values for inputs 0-7. The internal values
“A, B, C” are used for selection inputs B,C, and D. Simulate the circuit and test each
input combination filling in the table shown below. In the Lab connect the circuit and
verify the operations. Connect an LED to the multiplexer output so that it represents the
parity bit which lights any time when the four bits input have even parity.

35

Inputs Qutputs Connect data to

o il el Gl k== = [=R I I ISR I Feu} K Y Pl K] [ww!

Part 2: Vote Counter:

A committee is composed of a chairman (C), a senior member (S), and a member (M).
The rules of the committee state that:

* The vote of the member (M) will be counted as 2 votes

* The vote of the senior member will be counted as 3 votes.

* The vote of the chairman will be counted as 5 votes.

Each of these persons has a switch to close (“I”’) when voting yes and to open (“0”)

when voting no.

It is necessary to design a circuit that displays the total number of votes for each issue.
Use a seven segment display and a decoder to display the required number.

If all members vote no for an issue the display should be blank. (Recall from Experiment
#5, that a binary input 15 into the 7446 blanks all seven segments).

If all members vote yes for an issue, the display should be 0. Otherwise the display shows
a decimal number equal to the number of 'yes' votes. Use two 74153 units, which include
four multiplexers to design the combinational circuit that converts the inputs from the
members’ switch to the BCD digit for the 7446.

In Proteus use +5V for Logic 1 and ground for Logic 0 and use switches for C, S,and M.
Use two chips 74153 and one decoder 7446 verify your design and get a copy of your
circuit with the pin numbers to Lab so that you could connect the hardware in exactly the
same way.

36

OBSERVATIONS:

RESULT:

37

Lab NO0.10

OBJECTIVE : To construct and study the operations of the following
circuits:

RS and Clocked RS Flip-Flop
D Flip-Flop

OVERVIEW:

So far you have encountered with combinatorial logic, i.e. circuits for which the output
depends only on the inputs. In many instances it is desirable to have the next output
depending on the current output. A simple example is a counter, where the next number
to be output is determined by the current number stored. Circuits that remember their
current output or state are often called sequential logic circuits. Clearly, sequential logic
requires the ability to store the current state. In other words, memory is required by
sequential logic circuits, which can be created with boolean gates. If you arrange the
gates correctly, they will remember an input value. This simple concept is the basis of
RAM (random access memory) in computers, and also makes it possible to create a wide
variety of other useful circuits.

Memory relies on a concept called feedback. That is, the output of a gate is fed
back into the input. The simplest possible feedback circuit using two inverters is shown
below (Fig.1):

Fig.1: Simplest realization of feedback circuit

If you follow the feedback path, you can see that if Q happens to be 1 (or 0), it will
always be 1 (or 0) . Since it's nice to be able to control the circuits we create, this one
doesn't have much use -- but it does let you see how feedback works. It turns out that in
"real" sequential circuits, you can actually use this sort of simple inverter feedback
approach. The memory elements in these circuits are called flip-flops. A flip-flop circuit
has two outputs, one for the normal value and one for the complement value of the stored
bit. Binary information can enter a flip-flop in a variety of ways and gives rise to
different types of flip-flops.

38

RS Flip-Flop

RS flip-flop is the simplest possible memory element. It can be constructed from
two NAND gates or two NOR gates. Let us understand the operation of the RS flip-flop
using NOR gates as shown below using the truth table for ‘A NOR B’ gate. The inputs R
and S are referred to as the Reset and Set inputs, respectively. The outputs Q and Q' are
complements of each other and are referred to as the normal and complement outputs,
respectively. The binary state of the flip- flop is taken to be the value of the normal
output. When Q=1 and Q'=0, it is in the set state (or 1-state). When Q=0 and Q'=1, it is in
the reset/clear state (or O-state).

Circuit Diagram:

R [reset] 0
o [zet] ¢
AB A+B
o 0 1
01 0
1 0O 0
1 1 0

S=1 and R=0: The output of the bottom NOR gate is equal to zero, Q'=0. Hence both
inputs to the top NOR gate are equal to 0, thus, Q=1. Hence, the input combination S=1
and R=0 leads to the flip-flop being set to Q=1.

S=0 and R=1: Similar to the arguments above, the outputs become Q=0 and Q'=1. We
say that the flip-flop is reset.

S=0 and R=0: Assume the flip-flop was previously in set (S=1 and R=0) condition. Now
changing S to 0 results Q' still at 0 and Q=1. Similarly, when the flip-flop was previously
in a reset state (S=0 and R=1), the outputs do not change. Therefore, with inputs S=0 and
R=0, the flip-flop holds its state.

S=1 and R=1: This condition violates the fact that both outputs are complements of each

39

other since each of them tries to go to 0, which is not a stable configuration. It is
impossible to predict which output will go to 1 and which will stay at 0. In normal operation
this condition must be avoided by making sure that 1's are not applied to both inputs
simultaneously, thus making it one of the main disadvantages of RS flip-flop.

All the above conditions are summarized in the characteristic table below:

Characteristic Table:

R IS 1Q Q" | Comment
0 10 |Q |Q' |Hold state

(=)
—
—_
(=]

Set

—_
(e}
(e}
—_

Reset

1 11 1? |? |Indeterminate

Debounce circuit

An elementary example using this flip-flop is the debounce circuit. Suppose a
piece of electronics is to change state under the action of a mechanical switch. When this
switch is moved from position S to R (S=0, R=1), the contacts make and break several
times at R before settling to good contact. It is desirable that the electronics should
respond to the first contact and then remain stable, rather than switching back and forth as
the circuit makes and breaks. This is achieved by RS flip-flop which is reset to Q=0 by
the first signal R=1 and remains in a fixed state until the switch is moved back to position
S, when the signal S=1 sets the flip-flop to Q=I.

Gated or Clocked RS Flip-Flop

It is sometimes desirable in sequential logic circuits to have a bistable RS flip-flop
that only changes state when certain conditions are met regardless of the condition of
either the Set or the Reset inputs. By connecting a 2-input AND gate in series with each
input terminal of the RS NOR Flip-flop a Gated RS Flip-flop can be created. This extra
conditional input is called an "Enable" input and is given the prefix of "EN" as shown
below. When the Enable input "EN" = 0, the outputs of the two AND gates are also at
logic level 0, (AND Gate principles) regardless of the condition of the two inputs S and
R, latching the two outputs Q and Q’ into their last known state. When the enable input
"EN" = 1, the circuit responds as a normal RS bistable flip-flop with the two AND gates
becoming transparent to the Set and Reset signals. This Enable input can also be
connected to a clock timing signal adding clock synchronisation to the flip-flop creating
what is sometimes called a "Clocked SR Flip-flop".

So a Gated/Clocked RS Flip- flop operates as a standard bistable latch but the
outputs are only activated when a logic "1" is applied to its EN input and deactivated by a
40

logic "0". The property of this flip-flop is summarized in its characteristic table where Qn
is the logic state of the previous output and Qn+1 is that of the next output and the clock

input being at logic 1 for all the R and S input combinations.

Circuit Diagram:
H

EN/Clock
pulse

DI

Characteristic Table:

Qn RIS Qn+

0 00| O(Hold)
0 10 0

0 01 1

0 |1 |1 Indeterminate

10 0 1 (Hold)
110 0
101 1

1 1 |1 |Indeterminate

D FLIP-FLOP

An RS flip-flop is rarely used in actual sequential logic because of its undefined outputs
for inputs R= S= 1. It can be modified to form a more useful circuit called D flip-flop,
where D stands for data. The D flip-flop has only a single data input D as shown in the
circuit diagram. That data input is connected to the S input of an RS flip-flop, while the
inverse of D is connected to the R input. To allow the flip-flop to be in a holding state, a
D-flip flop has a second input called Enable, EN. The Enable-input is AND-ed with the
D-input.

When EN=0, irrespective of D-input, the R =S = 0 and the state is held.
When EN= 1, the S input of the RS flip-flop equals the D input and R is the inverse of D.

41

Hence, output Q follows D, when EN= 1. When EN returns to 0, the most recent input
D is ‘remembered’.

The circuit operation is summarized in the characteristic table for EN=1.

Circuit Diagram:

EN

Characteristic Table:

Qn D Qn+
0 0 0
0 1 1
1 0 0
1 1 1

Procedure:

Assemble the circuits one after another on your breadboard as per the circuit
diagrams. Circuit diagrams given here do not show connections to power supply
and LEDs assuming that you are already familiar with it from your previous lab
experience.
Connect the ICs properly to power supply (pin 14) and ground (pin 7) following
the schematics for ICs given above.
Using dip switch and resistors, facilitate all possible combinations of inputs from
the power supply. Use the switch also to facilitate pulse input to the circuit.
Turn on power to your experimental circuit.

42

For each input combination, note the logic state of the normal and complementary

outputs as indicated by the LEDs (ON = 1; OFF = 0), and record the results in a

table.

Compare your results with the characteristic tables.

When you are done, turn off the power to your experimental circuit.
Observations:

Table For RS FF:

Table For Gated RS FF:

Table For D FF:
Precautions:

Watch out for loose connections.

While changing the input condition keep the dip switch well pressed

43

LAB NO.11

OBJECTIVE : To construct and study the operations of the following
circuits:

JK and Master-Slave JK Flip-Flop
T Flip-Flop

OVERVIEW:

So far you have encountered with combinatorial logic, i.e. circuits for which the output
depends only on the inputs. In many instances it is desirable to have the next output
depending on the current output. A simple example is a counter, where the next number
to be output is determined by the current number stored. Circuits that remember their
current output or state are often called sequential logic circuits. Clearly, sequential logic
requires the ability to store the current state. In other words, memory is required by
sequential logic circuits, which can be created with boolean gates. If you arrange the
gates correctly, they will remember an input value. This simple concept is the basis of
RAM (random access memory) in computers, and also makes it possible to create a wide
variety of other useful circuits.

Memory relies on a concept called feedback. That is, the output of a gate is fed
back into the input. The simplest possible feedback circuit using two inverters is shown
below (Fig.1):

Fig.1: Simplest realization of feedback circuit

If you follow the feedback path, you can see that if Q happens to be 1 (or 0), it will
always be 1 (or 0) . Since it's nice to be able to control the circuits we create, this one
doesn't have much use -- but it does let you see how feedback works. It turns out that in
"real" sequential circuits, you can actually use this sort of simple inverter feedback
approach. The memory elements in these circuits are called flip-flops. A flip-flop circuit
has two outputs, one for the normal value and one for the complement value of the stored
bit. Binary information can enter a flip-flop in a variety of ways and gives rise to
different types of flip-flops.

44

JK FLIP-FLOP:

The JK flip flop (JK means Jack Kilby, a Texas instrument engineer, who invented it) is the
most versatile flip-flop, and the most commonly used flip flop. Like the RS flip-flop, it has two
data inputs, J and K, and an EN/clock pulse input (CP). Note that in the following circuit
diagram NAND gates are used instead of NOR gates. It has no undefined states, however. The
fundamental difference of this device is the feedback paths to the AND gates of the input, i.e. Q is

AND-ed with K and CP and Q with J and CP.

Q. | J | K Qua

= — 0 0| 0 0

J o——1 ! 0 |01 0

| :::>h7_h P00 0 1] 0 1
Ly ' 0 | 1] 1 |1(Togele.d,)
L | 2RI

Cke i 1 0] 0 1

. 1 0] 1 0

oo M et
[1 [1] 1 |0(Toggle.0,)

The JK flip-flop has the following characteristics:

If one input (J or K) is at logic 0, and the other is at logic 1, then the output is set or reset
(by J and K respectively), just like the RS flip-flop.

If both inputs are 0, then it remains in the same state as it was before the clock pulse
occurred; again like the RS flip flop. CP has no effect on the output.

If both inputs are high, however the flip-flop changes state whenever a clock pulse
occurs; 1.e., the clock pulse toggles the flip-flop again and again until the CP goes back to
0 as shown in the shaded rows of the characteristic table above. Since this condition is
undesirable, it should be eliminated by an improvised form of this flip-flop as discussed
in the next section.

MASTER-SLAVE JK FLIP-FLOP:

Although JK flip-flop is an improvement on the clocked SR flip-flop it still suffers from
timing problems called "race" if the output Q changes state before the timing pulse of the clock
input has time to go "OFF", so the timing pulse period (T) must be kept as short as possible (high
frequency). As this is sometimes not possible with modern TTL IC's the much improved Master-
Slave J-K Flip-Flop was developed. This eliminates all the timing problems by using two SR
flip-flops connected together in series, one for the "Master" circuit, which triggers on the leading
edge of the clock pulse and the other, the "Slave" circuit, which triggers on the falling edge of
the clock pulse.

The master-slave JK flip flop consists of two flip flops arranged so that when the clock

pulse enables the first, or master, it disables the second, or slave. When the clock changes state
again (i.e., on its falling edge) the output of the master latch is transferred to the slave latch.

Again, toggling is accomplished by the connection of the output with the input AND gates.

Circuit Diagram:

Master latch
S

Slave Latch

»

o5
H)—1

Characteristic Table:

CP J K QuQ, Q. 0,

0
1—0 0
0
0

0—11

0
0

[—y

Hold Hold
Hold Hold
0 1 Hold
Hold 0 1
1 0 Hold
Hold 1 O

Toggle Hold
Hold Toggle

46

T FLIP-FLOP:

The T flip-flop is a single input version of the JK flip-flop. The T flip-flop is obtained
from the JK type if both inputs are tied together.

Circuit Diagram:
Same as Master-Slave JK flip-flop with J=K=1

The toggle, or T, flip-flop is a bistable device, where the output of the T flip-flop "toggles"
with each clock pulse.

Till CP=0, the output is in hold state (three input AND gate principle).
When CP=1, for T=0, previous output is memorized by the circuit. When T=1 along with the
clock pulse, the output toggles from the previous value as given in the characteristic table
below.

Characteristic Table:

Qn+1

=

>—>—OOO
= =
(e

O|l—=|—

Procedure:

Assemble the circuits one after another on your breadboard as per the circuit diagrams.
Circuit diagrams given here do not show connections to power supply and LEDs
assuming that you are already familiar with it from your previous lab experience.

Connect the ICs properly to power supply (pin 14) and ground (pin 7) following the
schematics for ICs given above.

Using dip switch and resistors, facilitate all possible combinations of inputs from the
power supply. Use the switch also to facilitate pulse input to the circuit.

Turn on power to your experimental circuit.

For each input combination, note the logic state of the normal and complementary
outputs as indicated by the LEDs (ON = 1; OFF = 0), and record the results in a table.
Compare your results with the characteristic tables.

When you are done, turn off the power to your experimental circuit.

Observations:

Table For JK FF:

47

Table For Master-Slave JK FF:

Table For T FF:

Precautions:

Watch out for loose connections.

While changing the input condition keep the dip switch well pressed

48

LAB NO.12

Objective:
1) Getting familiar with Verilog HDL for digital design.
2) To simulate and verify the verilog code on ModelSim Software.

Equipment Required
e Modelsim software installed PCs

Procedure
1. Open the ModelSim software.

2. Create a new project by File => New => Project from the Main window.

3. A “Create Project” window appears as shown in figure below. Select a suitable name
for your project; leave the Default Library Name to work.

| |

1 Project Name

Project Location
|tera/ %0/modelsim_ase/examples Browse...

Default Library Name-

|w0rk

Copy Settings From~
|fmodelsim_asefmodelsim. ini Browse...

(* Copy Library Mappings { Reference Library Mappings

| |

oK Cancel |
4. After project name, an Add items to the Project dialog pops out as shown in figure
below.
k|

—Llick an the icon to add iters of that type:——

1]

Create Mew File Add Existing File
Create Simulation Create Mew Falder

Cloge |

49

5. From the “Add items to the Project” dialog click on Create a new file. If you have
closed the “Add items to the Project” dialog, then select Project => Add to Project
=> New File from the main window.

6. A Create Project File dialog pops out. Select an appropriate file name for the file you
want to add (the name of file must be same as you write in Step 4); choose Verilog as
the add file as type option and Top level as the Folder option (see figure below) and
then click on OK.

— File Name

I Erowse...|
—Addfileastype—— Folder
|Verilog ﬂ rlTop Level ﬂ
oK Cancel
[-

7. On the workspace section of the Main Window, double-click on the file you have just
created (VLSLv in our case).

M ModelSim ALTERA STARTER ED

[File Edit View Compile Simulate Add Project Tools Layout Window Help

\
| O- @iz S %M | e W SBRE| s, 2| X0% 2 @ %] tyoutfvopesion | |

e 1
"<

8 Froject [, tbrary

-
Re: C:/altera/90/modelsim_ase/tcl/vsim/pref.tcl ;l i
[# Lc nal

+

X ./model

'[A Transcript |

Project : visi |<No Design Loaded> tn: 1 col: 0
4

8. Type verilog code of the given task in the new window. For example here we use a
simple AND gate code.

50

™ ModelSim ALTERA ST/

File Edit View Compile Simulate Add Source Tools Layout Window Help

D-@l28 i @z AE0E || w[B SBAN| ous[T DB A

Layout [NoDesign -l
Workspace 5 #8X |16 fakera/S/modelsim. e
[f{mame [statdype [ordell | wne | [+]
_Jwisiv % Veilogo [1 module VLSI (c,a,b):
2 input a,b;
3 output c;
4 and gl {c,a,b);
5 enci.'nodulﬂ
6
Ed
[P = Kl 2
Transcript Hdl

Reading C:/altera/90/modelsim_ase/tcl/vsim/pref.td

Loading project sanal

reading C:\altera\90\modelsim_ase\win32aloem/../modelsi
Loading project visi

ModelSim>

im.ini

'\ A Transeript |

\iject i visi |<No Design Loaded>

tn: 5 Col: 9

9. Save your code.

10. In workspace window do right click on project name (i.e. VLSI) select Compile =>

Compile All. A message “ Compile of VLSI.v was successful” will appear in message

window.

M ModelSim ALTERA STAI El - Custon

File Edit View Compile Simulate Add Project Tools Layout Window Help
[O-@Eed @0 BESE w8 o8RH| owe[s AfJunn A
] Layout [NoDesign -l
i = i (e X % e ‘
| module VLSI (c,a,b);
input a,b;
Execute output ¢
Compile. Compile Selected
Add to Project b compile All
Remaove from Project Compile Out-of-Date
Close Project Compile Order...
Update Compile Report...
e Compile Summary...
Project Settings... Compile Properties... El
e — | o)
|Eroee [Mobay]| | sty - s
Transeript

Reading C:/altera/90/modelsim_ase/tcl/vsim/pref.td
Loading project sanal

Loading project visi

ModelSim:>

reading C:\altera\90\modelsim_ase\win32aloem/../modelsim. ni

A Transcript

Project : visi |<No Design Loaded>

11. For simulating the design click on Simulation => Start Simulation in main window,

simulation environment will appears as shown in figure below.

12. Click on the (+) sign next to the work library. You should see the name of the entity of

the code that we have just compiled “VLSI” select your desired file.

51

(=
7 ModelSim ALTERA STARTER EDITION 6.4a - Custom Altera Version

File Edit View Compile Simulate Add Project Tools Layout Window Help

O-8&H26 & 2R D ME

B M H welp[@ H S H Contains [, .7 H XpX B

Layout [NoDesign | ‘

orkspace : EEE C:faltera/o0/ n_asef LSLv 21
A x|
VIName V‘Smuﬁype ‘Drde‘l Ln# ‘ ‘A|
_Jvisiv ¥ Verlog 0 | 1. module VLSI (c,a,ll "
2 input a,b; M Start Simulation [
3] output c;
4 and gl (c,a,b)i| pesi
ign | VHDL | Verilog | Libraries | SDF | Others
5 endmodule] W 1 W W] &l
] "1Name |Type |Path ‘ “
7 =l work Library C:faltera/90/modelsim_ase/examples...
sanal Module C:/altera/0/modelsim_ase/examples...
[l visI Module C:/altera/90/modelsim_ase/examples...
(-{Ml z20model Library $MODEL_TECH/../altera/vhdl/220model
-4l 220model_ver Library $MODEL_TECH/../altera/verilog/220m...
4 i | =l att_ver Library $MODEL_TECHY../altera/verilog/alt vt
5 It_vil Library $MODEL_TECH/../altera/vhdl/alt_vil
#5 Project [[l Libs bl =il
1“‘ roject | i Library -IM w-{M] altera Library $MODEL_TECH/../altera/vhdl/altera |
<Ml altors mf Vibran &MONEL TErW/ faltoral mf = I
Transcript
Reading C:/alter Isim_ase/tel/vsim/pref.tcl Resolution

Loading project VLST
Compile of VLSLv was successful.

ModelSim>

Design Unit(s)
lrlwurk.VLSI

Mdefault ﬂ‘ |

-

{ I~ Enable optimization

Optimization Options... ‘

fA Transcript

I\Pm]ect : VLSI | <No Design Loaded>

0K Cancel

—

13. Locate the signals window and select the signals that you want to monitor for simulation.
For this example of AND gate, select all signals as shown figure below.

M ModelSim ALTERA

File Edit View Compile Simulate Add Objects Tools Layout Window Help

D-@sBa2&E] & m&s,gziu&%ﬁ“ Help ® @nﬁiai“ 4 &% B[100 ps @Zﬁ@;mﬁufpﬂgjﬁ]

2 A

Contains [, 74 “ ROX 3

Layout [Simulate bl |

|- Transcript

Workspace Had X E| [h] C:/altera/90/modelsim_ase/examples/VLSLv +Hdx
Value e | [=]
1 module VLSI (c,a,b):
2 input a,b;
3 output c;
4 and gl (c,a,b);
5 endmodule
6
7
. i |]
lasim % Files | B Memories | 2 Capacity 4/ [h] VLSLv L)
Transcript Hdl
|vsuw 2> jl
A

14. Drag the above signals by selecting all then right click and select Add => To Wave
=> Selected items to the wave window.

15. Now we are ready to simulate our design. For this purpose we will change the values of
inputs (i.e. a and b in above example of AND gate) by right click on input and select
Force and write either ‘0’ or ‘1’ in value box and repeat same step for changing the

value of other inputs.

52

16. Click Run button in main window tool bar and can see the changes in the both the
wave and objects windows.

M ModelSim ALTERA STARTER EDITION 6.4 —

File Edit View Cnmplle Simulate Add Objects Tools Layout Window Help
O-sBod & 2B o0 M&E@M\ He|p17m“@w.@a\ 100 pad
Contains [, pr J Hapd o A H Layout [Simulate J J B I L S H &Y. 5
M TN
Workspace ——————— #i——— # dl X £ wave - default x|
'11nstance |Des|gn unit ‘Deslgn ul Messages
=M VLSI VLSI Module -
L Rl VLSI Process 4 pisyb
“ VIS¢
ENI— o i
[Gaom [2 Fies [B oo IS copaemy 2 TSt e o
Transcript HA
Jvsmi 20 =
¥ Transcript 3|
‘Pro]ect : VLSI ‘Now: 1ns Delta: 0 ‘swm:NLSI

L

Results & Observations

53

Lab No.13

Objective
e To understand 4 to 1 MUX working principle
e To understand Quartus-II Software for Development of Verilog HDL Codes.
e To implement and Test 4 to 1 MUX on Verilog HDL by
o Gate Level Modeling
o Data Flow Modeling
o Behavioral Modeling

Equipment Required
e Quartus-II Modelsim Installed PCs

Theory

A multiplexer (MUX) is a digital switch which connects data from one of “n” inputs to a
single output. A number of “Select Inputs” determine which data input is connected to the
output. The Block Diagram of MUX with “n” data inputs and “s” select lines is shown in
figure below:

> nto1 [Single data output

ndatainput{ > MUX ——>

T

s select line

MUX acts like a digitally controlled multi-position switch where the binary code applied to
the select inputs controls the input source that will be switched on to the output. At any given
point of time only one input gets selected and is connected to output, based on the select
input signal. Input can be single bit or multi bits in nature. Following figure shows n to 1
MUX, handling “B” bits of each input and select them to “B” bits output.

54

B-bits Data |nput3< 7 ’ nto1 B-bits Data Output
(Total ninputs) | =& """ * Mux [

]

S
s Select Lines

A 4 to 1 MUX is shown in figure below. There are four input lines, 10 to I3, and two
selections lines, SO and S1, are decoded to select a particular input to appear at output.

l0——»

] 4161 Single data
2| MUX output

I 1

S0 S1

The truth table for the 4:1 MUX is given as:

S1 S0 Output
0 0 10
0 1 11
1 0 12
1 1 13

55

Procedure

—

Understand given Gate level modeling code.

Create new Quartus-II project for writing the code.

Open new Verilog file and write given code in it.

Include Verilog file in your project and compile your project.
Open Modelsim and simulate your project and verify results.
Understand given Data flow modeling code.

Repeat steps 3 to 5.

Understand given Behavioral Modeling code.

Repeat steps 3 to 5.

A S RSN A i

Gate Level Modeling

// Module 4-to-1 multiplexer using gate level modeling. module mux4 to 1 (output out,
input 10, 11,12, 13, input ~ sl,
s0);

// Internal wire declarations wire sln, sOn;

wire y0, y1, y2, y3;

// Gate instantiations

// Create sIn and sOn signals

not (sln, sl);

not (sOn, s0);

// 3-input and gates instantiated

and (y0, 10, s1n, sOn);

and (y1, i1, s1n, s0);

and (y2, 12, s1, sOn);

and (y3, i3, s1, s0);

// 4-input or gate instantiated

56

or (out, y0, y1, y2, y3);

endmodule

Data Flow Modeling

// Module 4-to-1 multiplexer using data-flow modeling module mux4 to 1 (output

out,
input 10, 11, 12, i3,
input sl, s0);
//Logic equation for out
assignout = (~s1 & ~s0 & 10)| (~s1 & sO &

i1)| (51 & ~s0 & i2) | (s1 & sO
&i3);

endmodule

Behavioral Modeling

// Module 4-to-1 multiplexer using behavioral modeling module mux4 to 1 (output

out,
input 10, 11,12, 13, input ~ sl,

s0);
always @(s1 or sO or i0 or il ori2 or i3)
begin
case ({sl, s0})
2'b00: out = 10;

2'b01:out =1l;

57

2'b10: out = 12;
2'b11: out = 13; default: out = 1'bx;
endcase

end endmodule

Results

58

Lab No.14

Objective

e To understand Quartus-II Software for Development of Verilog HDL codes.
e To implement and test Verilog HDL code of a given function.

Equipment Required

e Quartus II software installed PCs
e ALTERA DE2 Board

Procedure
1. Open the Quartus II software.
2. Create a new project by selecting “Create a New Project (New Project Wizard)”
as shown in Figure below.

Getting Started With Quartus® Il Software

Start Designing Start Learning

Desigrirng with Quartus ¥ software

requires 3 progect ¥ f r |
e Open Interactive Tutorial |

Open Existing Project |

Open Recent Project

raheem
awaiz

Web links:

Uterature Traindng | Dnlline Demos Support Nﬂim

— [Don'tshowthis screen again

3. Select a suitable name for your new directory (or you can use the existing one) and
also the name of the project and click on next option.

4. After creating new directory and project, create a new file by selecting File => New
and select Verilog HDL File type as shown in Figure below.

59

LU LUlUIauonas

10)

~New Quanus || Project
- S0PC Builder System
(= Design Files
i AHDL File
Block Diagram/Schematic File
EDIF File
State Machine File
¢ . -SystemVerilog HOL File
]7 . -Tcl Script File
—————Dou -VHDLFile
> B Memory Files
—_— ; Hexadecimal (Intel-Format) File
— ~Memory Initialization File
TySmm—— = Verification/Debugging Files
esls i ~In-System Sources and Probes File
-Logic Analyzer Interface File
SignalTap Il Logic Analyzer File
aboration | Wector Waveform File
e =) OtherFiles
~AHDL Include File
-Block Symbol File
~Chain Description File
b Synopsys Design Canstraints File
TextFile

itant (Post-Mapping
o . v
nt Analvsis

5. A command window will appear. Write your program and save it with the same

name as given in module command. (Make sure that file should be saved in the

same project directory mentioned in step 2)

Now compile your program by selecting Processing => start compilation.

7. After completion of compilation a message will appear “full compilation was
successful”.

4

8. To verify your verilog code on ALTERA board, assign suitable pins/switches/LEDs

to your input/output terminals by Assignments => Pin Planner. A pin planner
window will appear.

s S e e — s e 72— - —
¥ File Edit View Project Assignments Processing Tools Window Help

ity Logic OII

ile Edit View Processing Tools Window
& Cyclone It EP2C35F672C6 Groups ———————i " Top View - Wire Bond
0 awaiz £g 101y ﬁ@\ Named: [hd Cyclone | - EP2C35F672C8
k Node Name L T P D
BE <anew node>> v T
: o o
= o 2 20 DYOREVEAGOETEA-:
(20 VSR TRAROS AR o :
|= S oAE 2t E3RRaNa :
i o = Sennssesg ==
m s [SXVAVAYAY, s
& o pavatetato! A
yHierarchy | B Files | & Design Units =8 . L BReA AR GLI0 < ARO MR -
F Btart /0 Assignment e @g Avwwwvﬁg@%xg'@m-
—_— — . = 2 o =
" [Aee AV EEBDTA AOCDeAGGEeA
w [Compilation L > Analysis : Segnunrog)
1 B Se VA pR S 000008345080 e
15k 5 QYA VA
? B P Compile Design 5
v »Analysis 8 Synthesis 5
T Edit Settings
B8 ViewReport e AR TR
v P Analysis & Elaboration <[] r == ==
¥ Partition Merge -
1 NetiistViewers T Nemed: [§ -l Edt x| v/ [N_Nes PIN @ssignments Fiter: [Pins:all]
> Design Assistant (Post Node Name: Direction oca | yoBak | VREFGroup 1O Standard
b 10 Analvsis & X Tnput PIEE s [B5_n1 [3.3-V LVTTL (def... ||
L [Input i I0BANK_ 3 Column [/O LVDS51p
2 z Output PIN_AS I0BANK 3 Column /O LVDS52p E|=
Type [Message FIN_AS I10BANK 3 Column /O LVDS53n |
® Q) Info: Running Quar FIN_AT 10BANK 3 Column /O LVDS58n
\y Info: Command: gqua PIN_A8 T0BANK_3 Column /O LvDS62n
i Info: Longest tpd PIN_A9 I0BANK_3 Column /O LVDS65n
@ Info: Quartus IT Gl PIN_A10 IOBANK 3 Column /O LVDS67n

PIN_A13 IOBANK_4 Dedicated Clock CLK9, LVDSCLK4p, Input

‘ PIN_A14 IOBANK 4 Column [/Q LVDS74n -
« [0 |

System (2) | Processing (48) /| Extralnfo) Info (48) } Waming (3)), Critical Waming } Erar Suppressed (8) J\ Flag [

Viessage: 0 of 91 ll il [Location

i Info: Quartus II Full Compilation was successful. 0 errors,

60

9. Assign switches and LEDs to all input and output terminals respectively and start
I/O assignment analysis as shown in above figure. The location of ALTERA DE2
board can be selected from “ALTERA DE2 user manual”.

10. After I/O assignment analysis, now code is ready to be dumped in ALTERA DE2
board. Select Tools => Programmer and after selection of USB blaster option
select Start. A 100% completion message will appear, when program is completely
dump.

11. Now, you can test your program on ALTERA DE2 board.

Results and Observations

61

	OBJECTIVE: To become familiar with basic logic gates and their functions.
	BRIEF OVERVIEW:
	Common Gate ICs:
	1) Power up the 2-input AND , OR and NOT TTl ICs on a bread board.
	2) Apply inputs using push-to-on/off switches and observe the output via LEDs.
	3) Fill the Table provided in the observation area.
	OBSERVATIONS:
	RESULT:
	LAB NO.2
	OBJECTIVE: To implement a Half adder circuit.
	BRIEF OVERVIEW:
	Objective:
	Equipment Required
	Procedure
	Results & Observations

	Objective
	Equipment Required
	Theory
	Procedure
	Gate Level Modeling
	Data Flow Modeling
	Behavioral Modeling
	Results
	Objective
	Equipment Required
	Procedure
	Results and Observations

