

LABORATORY WORK BOOK

For Academic Session _______

Semester _______

PROGRAMMING WITH C-LANGUAGE

(TC-103)

For

FE (TC)

Name:

Roll Number:

Batch:

Department:

Year/Semester:

Department of Electronic Engineering
NED University of Engineering & Technology, Karachi

LABORATORY WORK BOOK

For The Course

TC-103 PROGRAMMING WITH C-LANGUAGE

Prepared By:

Danish Mahmood Khan (Sr. Laboratory Engineer)

Reviewed By

Dr. Irfan Ahmed (Associate Professor)

Approved By:

Board of Studies of Department of Electronic Engineering

INTRODUCTION

C is an imperative (procedural) systems implementation language. It was designed to be
compiled using a relatively straightforward compiler to provide low-level access to memory;
language constructs that map efficiently to machine instructions, and to require minimal run-
time support. C was therefore useful for many applications that had formerly been coded
in assembly language.

Despite its low-level capabilities, the language was designed to encourage cross-platform
programming. A standards-compliant and portably written C program can be compiled for a
very wide variety of computer platforms and operating systems with few changes to its
source code. The language has become available on a very wide range of platforms, from
embedded microcontrollers to supercomputers.

The Practical Workbook for “Programming with C-Language” introduces the basic as well as
advanced concepts of programming using C language. C has been selected for this purpose
because it encompasses the characteristics of both the high level languages (that give better
programming efficiency and faster program development) and the low level languages (which
have a better machine efficiency).

Each practical in this workbook contains syntax of statements/commands. Also, in order to
facilitate the students, some programs have been provided explaining the use of these
commands. For a wider scope of usage of the commands exercises are also given so that the
students can understand how to use these commands in actual programming.

Note:
Various Contents of this work book have been taken from Internet as well as from the
„Programming Language‟ manuals of Department of Computer and Information Systems,
Department Of Electrical Engineering and Department of Electronic Engineering at NED
University of Engineering and Technology.

http://en.wikipedia.org/wiki/Imperative_programming
http://en.wikipedia.org/wiki/Procedural_programming
http://en.wikipedia.org/wiki/System_programming
http://en.wikipedia.org/wiki/Compiler
http://en.wikipedia.org/wiki/Run-time_system
http://en.wikipedia.org/wiki/Run-time_system
http://en.wikipedia.org/wiki/Assembly_language
http://en.wikipedia.org/wiki/Cross-platform
http://en.wikipedia.org/wiki/Porting

CONTENTS

Lab
No.

DATE

Experiment Page
No.

Remarks/
Signature

1

 Introduction of Turbo C IDE and Programming
Environment

01-05

2

 To study basic building blocks of C-language such
as data types and input-output functions

06-09

3 To study the different types of arithmetic and logical
operators

10-13

4

Decision Making in Programming

14-17

5

Looping constructs in C-Language

18-22

6

Study of Functions

23-26

7

Preprocessor Directives

27-28

8

To understand how to define an array, initialize an
array and refer to individual element of an array

29-30

9

 To study how to manipulate strings and become
familiar with some of the library function available for
strings in C

31-33

10

Study of Structures and Unions

34-35

11 To study the concept of pointers in C and their
applications

36-38

12

To perform Disk I/O using C (Filling)

39-42

13

Learning Text and Graphics modes of Display

43-44

14

To explore some of the basic graphic functions in C

45-49

15

To study a method of hardware interfacing using C

50-52

NED University Of Engineering And Technology-Department of Electronic Engineering

5

Lab Session 01

Object:

Introduction of Turbo C IDE and Programming Environment

Theory:

The Development Environment - Integrated Development Environment (IDE)

The Turbo C compiler has its own built-in text editor. The files you create with text editor
are called source files, and for C++ they typically are named with the extension .CPP, .CP, or .C.

The C Developing Environment, also called as Programmer’s Platform, is a screen display

with windows and pull-down menus. The program listing, error messages and other
information are displayed in separate windows. The menus may be used to invoke all the
operations necessary to develop the program, including editing, compiling, linking, and
debugging and program execution.

Figure 1.1: TURBO C IDE Environment

Invoking the IDE

To invoke the IDE from the windows you need to double click the TC icon in the
directory c:\tc\bin. The alternate approach is that we can make a shortcut of tc.exe on the
desktop. This makes you enter the IDE interface, which initially displays only a menu bar at
the top of the

NED University Of Engineering And Technology-Department of Electronic Engineering

6

screen and a status line below will appear. The menu bar displays the menu names and the status
line tells what various function keys will do.
Default Directory
The default directory of Turbo C compiler is c:\tc\bin.

Using Menus
If the menu bar is inactive, it may be invoked by pressing the [F10] function key. To select
different menu, move the highlight left or right with cursor (arrow) keys. You can also revoke
the selection by pressing the key combination for the specific menu.

 Opening New Window
To type a program, you need to open an Edit Window. For this, open file menu and click “new”. A
window will appear on the screen where the program may be typed.

Figure 1.2: Opening new window

Implementing a Simple C Program

NED University Of Engineering And Technology-Department of Electronic Engineering

7

Saving a Program
To save the program, select save command from the file menu. This function can also be
performed by pressing the [F2] button. A dialog box will appear asking for the path and name of
the file. Provide an appropriate and unique file name. You can save the program after compiling
too but saving it before compilation is more appropriate.

Making an Executable File
The source file is required to be turned into an executable file. This is called “Making” of the

.e xe file. The steps required to create an executable file are:

1. Create a source file, with a .c extension.
2. Compile the source code into a file with the .obj extension.
3. Link your .obj file with any needed libraries to produce an executable program.

Figure 1.3: Making an executable file

All the above steps can be done by using Run option from the menu bar or using key combination
Ctrl+F9 (By this linking & compiling is done in one step).

Compiling the Source Code
Although the source code in your file is somewhat cryptic, and anyone who doesn't know C will
struggle to understand what it is for, it is still in what we call human-readable form. But, for the
computer to understand this source c ode, it must be converted into machine-readable form. This is
done by using a compiler. Hence, compiling is the process in which source code is translated into
machine understandable language.

It can be done by selecting Compile option from menu bar or using key combination Alt+F9.

Creating an Executable File with the Linker
After your source code is compiled, an object file is produced. This file is often named with the
extension .OBJ. This is still not an executable program, however. To turn this into an executable
program, you must run your linker. C programs are typically created by linking together one or
more OBJ files with one or more libraries. A library is a collection of linkable files that were
supplied with your compiler.

Compiling and linking in the IDE
In the Turbo C IDE, compiling and linking can be performed together in one step. There are two

NED University Of Engineering And Technology-Department of Electronic Engineering

8

ways to do this: you can select Make EXE from the compile menu or you can press the [F9] key.

Executing a Program
If the program is compiled and linked without errors, the program is executed by selecting Run from
the Run Menu or by pressing the [Ctrl+F9] key combination.

Figure 1.4: Executing a program

 The Development Cycle
If every program worked the first time you tried it that would be the complete development
cycle: Write the program, compile the source code, link the program, and run it.
Unfortunately, almost every program, no matter how trivial, can and will have errors, or bugs, in
the program. Some bugs will cause the compile to fail, some will cause the link to fail, and some
will only show up when you run the program.

Whatever type of bug you find, you must fix it, and that involves editing your source code,
recompiling and re-linking, and then re-running the program.

Correcting Errors
If the compiler recognizes some error, it will let you know through the Compiler window. You’ll
see that the number of errors is not listed as 0, and the word “Error” appears instead of the word
“Success” at the bottom of the window. The errors are to be removed by returning to the edit
window. Usually these errors are a result of a typing mistake. The compiler will not only tell you
what you did wrong; they’ll point you to the exact place in your code where you made the
mistake.

Exiting IDE
An Edit window may be closed in a number of different ways. You can click on the small square
in the upper left corner, you can select close from the window menu, or you can press the
[Alt][F3] combination. To exit from the IDE, select Exit from the File Menu or press [Alt][X]
Combination.

NED University Of Engineering And Technology-Department of Electronic Engineering

9

Exercise:

1. Type the following program in C Editor and execute it. Mention the Error.

void main(void)
{
printf(“ This is my first program in C ”);
}

2. Add the following line at the beginning of the above program. Recompile the program. What
is the output?

#include<stdio.h>

3. Make the following changes to the program. What Errors are observed?
i. Write Void instead of void.

ii. Write void main (void);

iii. Remove the semi colon ‘;’

iv. Erase any one of brace ‘{’ or ‘}’

NED University Of Engineering And Technology-Department of Electronic Engineering

10

Object:

Lab Session 02

To study basic building blocks of C-language such as data types and input-output
functions

Theory:
This Lab is concerned with the basic elements used to construct C elements. These
elements includes the C character set, identifiers, keywords, data types, constants,
variables, expressions statements and escape sequences.

Comments:
Comments statements will not to be compiled. Comments are simply the statements to improve
program readability and to document program properly. Comments begins with /* and end with
*/, text is placed in between them.
/* Lab Session 2 */

printf() Function:
This function is used to output combination of numerical values, single character and strings.

Syntax:-
printf(“fomat specifier” , variable or constant); printf(“text “);

Example:-
printf(“Area of circle is %f sqmm” ,3.756);

scanf() Function:
The purpose of scanf() function is to except data from keyboard, and place that data to a
memory location specified in its argument.

Syntax:-
scanf(“fomat specifiers” , address of variable);

Examples:-
scanf(“ %d” , &r);

Escape Sequences:
These are non printing characters. They are special character set, each with specific meaning.
An escape sequence always begins with a back slash and is followed by one or more special
characters.

NED University Of Engineering And Technology-Department of Electronic Engineering

11

Table 2.1: Escape sequences

Variables:
A variable name is a location in memory where a value can be stored for use by a program. All
variables must be defined with a name and a data type in the code before they can be used in a
program.

A variable name in C should be a valid identifier. An identifier is a series of characters consisting of
letters, digits and underscore and does not begin with a digit. C is case sensitive i.e. area and Area
can’t be treated as same.

There are certain reserved words called Keywords that have standard, predefined meanings in C.
These keywords can be used only for their intended purpose; they can’t be used as programmer
defined identifier.

Data Types:
C supports several different types of data, each of which may be represented differently within
the computer’s memory. The basic data types are listed below in Table 2.2.

Table 2.2: Data type and storage allocation

Format Specifiers:
Format specifier specifies that which type of data has to be print or read into. Following is a list

NED University Of Engineering And Technology-Department of Electronic Engineering

12

of different format specifiers in table 2.3.

Example:

Table 2.3: Format specifiers

Output:

Figure 2.1: Output

NED University Of Engineering And Technology-Department of Electronic Engineering

13

Exercise:
1) Identify and correct the errors in the following statements.
a) scanf(“d “,value);

b) printf(“ The answer of %d+%d is “\n,x,y);

c) scanf(“ %d%d” ,&number1,number2);

d) printf(“The number is %d /n” ,&number1);

2) Write a single C statement to accomplish the following tasks.
a) Prompt the user to enter an integer in inverted commas.

Like this “Enter an integer: “

b) Read an integer from the keyboard and store the value entered in the variable a

c) Read two integers from the keyboard and store the value entered in the variable a & b .

3) What do these codes print?
a) printf(“ \n*\n**\n***\n****\n*****”);

b) printf(“This is\base”);

c) printf(“\n\t\t\t1\n\t\t2\n\t3\n4\n\t5\n\t\t6\n\t\t\t7”);

NED University Of Engineering And Technology-Department of Electronic Engineering

10

Object:

Lab Session 03

To study the different types of arithmetic and logical operators

Theory:
In C, there are various operators, used to form expressions. The data items on which the
operators act upon are called operands. Some operators require two operands while other act
upon only one operand.
They are classified as:

1. Arithmetic Operators (binary type)
2. Unary Operators
3. Relational and Logical Operators
4. Assignment Operator

Arithmetic Operators:
In C, most programs perform arithmetic calculations. Arithmetic calculations can be performed
by using the following arithmetic operators. Table 3.1 summarizes the C arithmetic operators.
Note the use of various special symbols not used in algebra. The asterisk (*) indicates
multiplication and the percent sign (%) is the modulus or remainder operator. The arithmetic
operators in the Table are all binary operators, i.e., operators that take two operands.

Unary Operators:

Table 3.1: Arithmetic operators

In addition to the arithmetic assignment operators, C++ also provides two unary operators that
act upon on a single operand to produce a new value, for adding 1 to or subtracting 1 from the
value of a numeric variable. These are the unary increment operator, ++, and the unary decrement
operator, --, which are summarized in the Table 3.2.

Table 3.2: Increment and decrement operators

NED University Of Engineering And Technology-Department of Electronic Engineering

11

Assignment Operators:
C++ provides several assignment operators for abbreviating assignment expressions. For
example, the statement: c = c + 3;
can be abbreviated with the addition assignment operator += as

c += 3;
The += operator adds the value of the expression on the right of the operator to the value of the
variable on the left of the operator and stores the result in the variable on the left of the operator.
Thus the assignment c += 3 adds 3 to c. Table 3.3 shows the arithmetic assignment operators,
sample expressions using these operators and explanations.

Table 3.3: Arithmetic assignment operators

Summary of Operator Precedence and Associativity:
Table 3.4 adds the logical operators to the operator precedence and associativity chart. The
operators are shown from top to bottom, in decreasing order of precedence.

Table 3.4: Operator precedence and associativity

NED University Of Engineering And Technology-Department of Electronic Engineering

12

EXERSISE
1) Identify and correct the errors in the following statements.

a) if (c<7);
printf(C is less than 7\n);

b) if (c =>7);
printf(C is equal to or less than 7\n);

c)printf(Remainder of %d divided by %d is \n , x , y , x % y);

d) num1+num2=ans;

2) a. Evaluate the following.
1) 9.0/6.0 +5/2 =
2) 9*3/4 =
3) 14%7 +3%4 =

b. Determine the value assigned to the relevant variable. int a;
loat b;
1) b = 5/4 ; b =
2) a = 5/4 ; a =
3) b = 5/2 +3.0; b =

c. Determine the value of int x after each statement. Initially x =5.

I. printf(%d\n , x); Ans: x = printf(%d\n , ++x); Ans: x =
printf(%d\n , x++); Ans: x = printf(%d\n , x); Ans: x =

II. printf(%d\n , x); Ans: x =
printf(%d\n , --x); Ans: x =
printf(%d\n , x--); Ans: x =
printf(%d\n , x); Ans: x =

NED University Of Engineering And Technology-Department of Electronic Engineering

13

3) State the order of evaluation of the operators in each of the following C statements and show
the value of x after each statement is performed.
a) x = 7 + 3 * 6 / 2 1;
b) x = 2 % 2 + 2 * 2 -2 / 2;
c) x = (3 * 9 * (3 + (9 * 3 / (3)))) ;
Answer:

a)
b)
c)

4) Write a program that asks the user to enter two numbers, obtain the two numbers from the
user and print the sum, difference, quotient and remainder of the two.

NED University Of Engineering And Technology-Department of Electronic Engineering

14

Object:

Lab Session 04

Decision Making in Programming

Theory:

Normally, your program flows along line by line in the order in which it appears in your source
code. But, it is sometimes required to execute a particular portion of code only if certain condition
is true; or false i.e. you have to make decision in your program. There are three major decision
making structures. Four decision making structures:

1. If statement
2. If-else statement
3. Switch case
4. Conditional Operator (Rarely used)

The if statement:
The if statement enables you to test for a condition
(such as whether two variables are equal) and branch to different parts of your code, depending on
the result.
The simplest form of an if statement is:

if (expression)
statement;

The expression may consist of logical or relational operators like (> >= < <= && ||)

Example:
void main(void)
{
int var;
printf(“Enter any number;”);
scanf(“%d”,&var); if(var==10)
printf(“The user entered number is Ten”);

}

Figure 4.1: Flow Chart (If-statement)

NED University Of Engineering And Technology-Department of Electronic Engineering

15

The if-else statement:
Often your program will want to take one branch if
your condition is true, another if it is false. The keyword else can be used to perform this
functionality:

if (expression) statement;
else

statement;

Note: To execute multiple statements when a condition
is true or false, parentheses are used.
Consider the following example that checks whether
the input character is an upper case or lower case:

Figure 4.2: Flowchart (If-else statement)

Example:
void main(void)
{
char ch;
printf(“Enter any character”); ch=getche(); if(ch>=’A’&&ch<=’Z’)

printf(“%c is an upper case character”,ch); else
printf(“%c is a lower case character”,ch); getch();

}

The switch Statement:
Unlike if, which evaluates one value, switch statements allow you to branch on any of a number of
different values. The general form of the switch statement is:

switch (expression)
{
case valueOne: statement; break;
case valueTwo: statement; break;
....
case valueN: statement; break;
default: statement;
}

NED University Of Engineering And Technology-Department of Electronic Engineering

16

Example:

void main(void)
{
clrscr(); char grade;
printf(“\n Enter your Grade: ”); grade=getche();
switch(grade)
{
case ‘A’:
case ‘a’:
printf(“\n Your percentage is 80 or above 80 ”); break;

case ‘B’:
case ‘b’:
printf(“\n Your percentage is in 70-80 ”); break;

default:
printf(“\n Your percentage is below 70 ”);

}
getch();

}
Conditional (Ternary) Operator:
The conditional operator (?:) is C’s only ternary operator; that is, it is the only operator to take
three terms.
The conditional operator takes three expressions and returns a value: (expression1) ? (expression2) :
(expression3);
This line is read as "If expression1 is true, return the value of expression2; otherwise, return the
value of expression3." Typically, this value would be assigned to a variable.

Example:

void main(void)

{ clrscr(); float per;
printf(“\n Enter your percentage;”); scanf(“%f”,&per);
printf(“\n you are”);
printf(“%s”, per >= 60 ?“Passed”: ”Failed”); getch(); }

Typecasting:
Typecasting allow a variable of one type to act like another for a single operation. In C
typecasting is performed by placing, in front of the value, the type name in parentheses.

NED University Of Engineering And Technology-Department of Electronic Engineering

17

Exercise:
1. Write a program that takes a number as input from user and checks whether the number is
even or odd.

a) Using if-else
b) Using conditional operator

2. Mention the output for the following program:

#include<stdio.h> void main()

{
int a=100; if(a>10)
printf("Shahid Afridi"); else if(a>20) printf("Shoaib Akhtar"); else if(a>30) printf("Kamran
Akmal");
}

3. Write a program that declares and initializes two numbers with your_roll_no and
your_friend_roll_no and displays the greater of the two. Use ternary operator.

NED University Of Engineering And Technology-Department of Electronic Engineering

18

Object

Lab Session 05

Looping constructs in C-Language

Theory
The concept of looping provides us a way to execute a set of instructions more than once until a
particular condition is true. In C, loop is constructed by three ways.

Types of loops:

1) for Loop
i. simple for loop ii. Nested for loop

2) while Loop
i. simple while loop ii. Nested while loop

3) do - while Loop
i. simple do while loop ii. Nested do while loop

The for Statement
The for loop is appropriate when you know in advanced how many times the loop will be
executed. Here you have a counter variable whose limits are define. The general form of the for
statement is

for (initialization of counter; loop continuation condition; increment counter
)
statements;
The initialization expression initializes the loop's control variable or counter (it is normally set to
0); loop continuation condition determines whether the loop counter is within its limits or not
and finally the increment statement increments the counter variable after executing the inner loop
statements. The flow chart of the for loop can be shown as

Figure 5.1: Flow Chart (for loop)

NED University Of Engineering And Technology-Department of Electronic Engineering

19

Example:

Output:

Figure 5.2: Output

The while Statement:
The while loop is used to carry out looping
operations, in which a group of statements is executed repeatedly, if condition following while is
true otherwise control is transferred to the end of the loop. Here we do not know how many
times the loop will be executed.

The general form of the while statement is
while (condition)
{
statement1;
:
statement2;
}
Figure 5.3: Flow chart(While Loop)

NED University Of Engineering And Technology-Department of Electronic Engineering

20

Example:

Output:

Figure 5.4: Output

The do while Statement
The do while repetition statement is similar to
the while statement. In the while statement, the loop-continuation condition test occurs at the
beginning of the loop before the body of the loop executes. The do while statement tests the
loop-continuation condition after the loop body executes; therefore, the loop body always executes
at least once.

do
{ Statement;
}
while (condition);

Figure 5.5: Flow chart (Do-while loop)

NED University Of Engineering And Technology-Department of Electronic Engineering

21

This loop must be executed at least once because the condition is checked at the end. If the
condition is following while is true the control is transferred to the beginning of the loop
statement otherwise control is transferred to the statement following while statement.

Example:

Output:

Figure 5.6: Output

NED University Of Engineering And Technology-Department of Electronic Engineering

22

Exercise:
1. Write down the output of the following program statements

i. for (i=1; i<=10;i++) printf(“%d \n”,i);

ii. int a = 10, b = 10; for(inti=1;i<=a;i++)
{ a++; b--;
printf(“a = %d,b=%d\t”,a,b);
}

2 Write a program to generate a series of first 50 even numbers

3. Write a program to generate tables from 2 to 20 with first 10 terms

4. Write two program segments, which may be used to input a sentence.
Terminate when Enter key is pressed. (Use for and while loops).

5. Write a program to enter the numbers till the user wants and at the end it should display the
count of positive, negative and zeros entered.

6. Write a program to find the range of a set of numbers. Range is the difference between the
smallest and biggest number in the list.

7. Write a program to display the following patterns.

NED University Of Engineering And Technology-Department of Electronic Engineering

23

Object:

Lab Session 06

Study of Functions

Theory:
The general structure of a function declaration is as follows:

return_type function_name(arguments);

Before defining a function, it is required to declare the function i.e. to specify the function
prototype. A function declaration is followed by a semicolon ‘;’. Unlike the function definition only
data type are to be mentioned for arguments in the function declaration. The function call is made as
follows:

return_type = function_name(arguments);

There are four types of functions depending on the return type and arguments:

• Functions that take nothing as argument and return nothing.
• Functions that take arguments but return nothing.
• Functions that do not take arguments but return something.
• Functions that take arguments and return something.

Example 1:

Consider a simple example of function declaration, definition and call. void function1(void);
void function2(void)
{
printf("Writing in Function2\n");
}
void main(void)
{

}

{

}
Example 2:

printf("Writing in main\n"); function1();

void function1(void) printf("Writing in Function1\n");
function2();

Consider another example that adds two numbers using a function sum() . void sum(void);
void main(void)

NED University Of Engineering And Technology-Department of Electronic Engineering

24

{
printf(“\nProgram to print sum of two numbers\n”); sum(void);
}
void sum(void)
{
int num1,num2,sum; printf(“Enter 1st number:”); scanf(“%d”,&num1); printf(“Enter 2nd
number:”); scanf(“%d”,&num2); sum=num1+num2;
printf(“Sum of %d+%d=%d”,num1,num2,sum);
}

Recursion
Recursion is an ability of a function to call itself.

Example:
An example: A program that calculates the following series using recursion.
n + (n-1) + (n-2) + ………… + 3 +2 + 1

int add(int); void main(void)
{
int num,ans;
printf(“Enter any number:”); scanf(“%d”,&num); ans=add(num); printf(“Answer=%d”,ans);
getch();
}
int add(int n)
{
int result; if(n==1) return 1;
result=add(n-1) + n; return result;
}

Built-in Functions
There are various header files which contain built-in functions. The programmer can include those
header files in any program and then use the built-in function by just calling them.

NED University Of Engineering And Technology-Department of Electronic Engineering

25

Exercise:

1. Using function, write a complete program that prints your name 10 times. The function can take
no arguments and should not return any value.

2. Write function definition that takes two complex numbers as argument and prints their sum.

3. Using a function, swap the values of two variables. The function takes two values of Variables
as arguments and returns the swapped values

NED University Of Engineering And Technology-Department of Electronic Engineering

26

4. Identify the errors (if any) in the following code:
a) func(int a,int b)
{ int a;
a=20;
return a; }

b) #include<stdio.h> int main()

{ int myfunc(int); int b; b=myfunc(20); printf(“%d”,b); return 0; }

int myfunc(int a)
{ a > 20? return(10): return(20);
}

5. Using recursion, write a program that takes a number as input and print its binary equivalent.

6. main() is a function. Write a function which calls main(). What is the output of this program?

NED University Of Engineering And Technology-Department of Electronic Engineering

27

OBJECT

Lab Session 07

Preprocessor Directives

THEORY
Preprocessor directives are actually the instructions to the compiler itself. They are not translated
but are operated directly by the compiler. The most common preprocessor directives are

i. include directive
ii. define directive

i. include directive: The include directive is used to include files like as we include header
files in the beginning of the program using #include directive like

#include<stdio.h>
#include<conio.h>

ii. define directive: It is used to assign names to different constants or statements which are to
be used repeatedly in a program. These defined values or statement can be used by main or in the
user defined functions as well. They are used for

a) Defining a constant b) Defining a statement c) Defining a mathematical expression

Example

#define pi 3.142
#define p printf(“enter a new number”);
#define for(a) (4/3.0)*pi*(a*a*a);

They are also termed as macros.

Exercise:

1. Write a program which calculates and returns the area and volume of a sphere using define
directive.

NED University Of Engineering And Technology-Department of Electronic Engineering

28

2. Write a program which takes four integers a, b, c, d as input and prints the largest one using define
directive.

3. Which of the following are correctly formed #define statements:

#define INCH PER FEET 12

#define SQR (X) (X * X)

#define SQR(X) X * X

#define SQR(X) (X * X)

NED University Of Engineering And Technology-Department of Electronic Engineering

29

Object:

Lab Session 08

To understand how to define an array, initialize an array and refer to individual element of an
array

Theory:
In C we define an array (also termed as subscripted variable) as a collection of variables of
certain data type, placed contiguously in memory. Let s examine this definition more closely.

Like any other variable in C, an array must be defined int TC[15];

This statement declares an array variable, named TC, capable of holding 15 integer type data
elements. The brackets [] tell the compiler that we are dealing with an array.

Example:
The following example presents how to define arrays, how to initialize arrays and how to
perform many common array manipulations.

NOTE: All the array elements are numbered. The first element in an array is numbered 0, so the last
element is one less than the size of the array.

NED University Of Engineering And Technology-Department of Electronic Engineering

30

Output:

Exercise:

Figure 8.1: Output

1. Write a program to convert a decimal number into its binary equivalent.

2. Read in 20 numbers, each of which is in between 10 and 100. As each number is read, print it only
if it is not a duplicate of number already read.

NED University Of Engineering And Technology-Department of Electronic Engineering

31

Object:

Lab Session 09

To study how to manipulate strings and become familiar with some of the library function
available for strings in C

Theory:
A string is an especial type of array of type char. Strings are the form of data used in
programming languages for storing and manipulating text.
A string is a one dimensional array of characters. Following are some examples of string
initializations
char str1[]={ N , E , D , \0 }; char str2[]={ NED };
char str3[]= NED ;

Each character in the string occupies one byte of memory and the last character is always a
NULL i.e. \0, which indicates that the string has terminated. Note that in the second and third
statements of initialization \0 is not necessary. C inserts the NULL character automatically.

Example:
Let us consider an example in which a user provides a string (character by character) and then
the stored string is displayed on the screen.

NOTE: It is necessary to provide \0 character in the end. For instance if you make that statement a
comment, you will observe erroneous results on the screen.

NED University Of Engineering And Technology-Department of Electronic Engineering

32

Output:

Figure 9.1: Output

Library Functions for Strings
There are many library functions for string handling in C. Some of the most common are listed
below. In order to use these library functions you have to include header file named string.h

Table 9.1: Library functions for strings

Study all the above mentioned functions.

Example:
A palindrome is a string that is spelled the same way forward and backwards. Some examples of
palindromes are: radar, mom and dad. Let s implement a program that that determines whether
the string passed to is palindrome or not.

NED University Of Engineering And Technology-Department of Electronic Engineering

33

Output:

Exercise:

Figure 9.2: Output

1. Carefully observe the output generated by a program. You are required to write the source code for
the program.

NED University Of Engineering And Technology-Department of Electronic Engineering

34

Object:

Lab Session 10

Study of Structures and Unions

Theory:
If we want a group of same data type we use an array. If we want a group of elements of
different data types we use structures. For Example: To store the names, prices and number of
pages of a book you can declare three variables. To store this information for more than one
book three separate arrays may be declared. Another option is to make a structure. No memory is
allocated when a structure is declared. It simply defines the “form” of the structure. When a
variable is made then memory is allocated. This is equivalent to saying that there is no memory
for “int”, but when we declare an integer i.e. int var; only then memory is allocated.

Unions are also used to group a number of different variables together like a structure. But,
unlike structures, union enables us to treat the same space in memory as a number of different
variables. That is, a union is a way for a section of memory to be treated as a variable of one type on
one occasion, and as a different variable, of a different type, on another occasion.

Example:

struct personnel
{
char name[50]; int agentno;
};
void main(void)
{
struct personnel agent1={“Mustafa”,35}; printf(“%s”,agent1.name); printf(“%d”,agent1.agentno);
getch();
}

Exercise:

1. Declare a structure named employee that stores the employee id, salary and department.

NED University Of Engineering And Technology-Department of Electronic Engineering

35

2. Declare an array of 40 employees for the structure defined in question1. Also write
statements to assign the following values to the employee [6].
Employee id = “Your_roll_no” salary = 30,000 and department = “IT dept”

3. Write a function that prints the highest salaried person amongst the employees defined in
question 2.

4. How much memory is allocated for obj1 in the following code? union x
{
int i[(int)ceil(your_roll_number/2)]; //declare an array ,having as many elements as your
//half of your roll number
char c; float f;
} obj1;

5. Define a structure to represent a complex number in rectangular format i.e. real +i imag.
Name it rect. Define another structure called polar that stores a complex number as polar format

i.e. mag /angle. Write a function called convert that takes a complex number as input in
rectangular format and returns the complex number converted in Polar form.

NED University Of Engineering And Technology-Department of Electronic Engineering

36

Object:

Lab Session 11

To study the concept of pointers in C and their applications

Theory:
Pointers are variables whose values are memory addresses. Normally, a variable directly contains
a specific value. A pointer, on the other hand contains, an address of a variable that contains a
specific value.
Pointers are used in situations when passing actual value is difficult or undesirable; like, returning
more than one value from a function. The concept of pointers also provides an easy way to
manipulate arrays and to pass an array or a string from one function to another.

Example:
Let s explore how we declare and initialize a pointer variable, using the following

Output:

Figure 11.1: Output
Address on your screen would be different, as they it is allocated when the program executes.

The Indirection Operator: *
The indirection unary operator * , is used to access the contents of the memory location pointed
to. The name indirection Operator stems from the fact that the data is accessed indirectly. The
same operator is sometimes called as dereference operator.
Hence, * has several different uses

NED University Of Engineering And Technology-Department of Electronic Engineering

37

 Multiply Operator (binary)
 Indirection Operator (Unary)
 Used in declaration of a Pointer.

Each time you use * , the complier distinguishes its meaning by the context.

Pointers and Arrays
There is an inherent relationship between arrays and pointers; in fact, the compiler translates
array notations into pointer notations when compiling the code, since the internal architecture of
the microprocessor does not understand arrays.
An array name can be thought of as a constant pointer. Pointer can be used to do any operation
involving array subscript. Let us look at a simple example.

Example:

Output:

Figure 11.2: Output

NED University Of Engineering And Technology-Department of Electronic Engineering

38

Exercise:
1. Using dynamic memory allocation, declare an array of the length user wants. Take input in
that array and then print all those numbers, input by the user, which are even. The verification of
whether a number is even or not should be done via macro.

2. Using pointers, write a program that takes a string as input from user and calculates the
number of vowels in it.

3. Write pointer notation equivalent to the following array notations: i. arr[10] :
ii. arr2D[5][6] :

4. Give the function definition for the following function declarations:
i. void sort (char **x ,int no_of_strings);

// Sorts the strings in alphabetical order

ii. char* strstr(char *s1, char *s2);
//Returns the pointer to the element in s1 where s2 begins.

iii. int strlen (char *str);
// Determines length of string

iv. void swap (int *x, int *y);
// You can NOT declare any variable in the function definition

NED University Of Engineering And Technology-Department of Electronic Engineering

39

Object:

Lab Session 12

To perform Disk I/O using C (Filling)

Theory:
Storage of data in arrays and structure members is temporary; all such data are lost when a
program terminates.

Files are used for permanent retention of large data The smallest data item in a computer can
assume the value of 0 or the value of 1. Such a data item is called a bit. Programmer prefers to
work with data in the form of decimal digits, letters and special symbols. These are referred as
characters.
Since computers can only process 1s and 0s, every character is represented as a pattern of 1s and 0s
called byte (group of 8 bits). Just as characters are composed of bits, fields are composed of
charters. A field is a group of character that conveys meaning. A record is composed of several
related fields.
A file is a group of related records. A group of related files is sometimes called as database. A
collection of programs designed to create and manage database is called as a database
management system.

Example 1:
Let s explore some of the basic functions and features of Standard I/O (a type of disk I/O) with
the help of following program

In the first line of main(), we have generated a pointer of type FILE. FILE is a structure that
leads indirectly to the operating system s file control block. It is declared in the header file
stdio.h . The FILE pointer name ptf shall be used latter to refer to a file. Each file must have a
separate pointer.

NED University Of Engineering And Technology-Department of Electronic Engineering

40

We then make use of the function fopen to establish a line of communication with the file. The
file pointer ptf is assigned a value corresponding to the file name ali.txt.

Function fopen takes two arguments: a file name with path (optional) and a file opening mode.
The file open mode w indicates that the file is to be opened for writing. If a file does not exist, it
will be created and opened.

Next two lines take characters form user and write it on the file using putc() function. The last
statement closes the file. This will free the communication areas used by the file. The areas include
FILE structure and the buffer.

Different Modes of fopen() :

Table 12.1: Different modes of fopen()

Example 2:

Now let s read the file

The main difference in this program is that the reading program has to search the last character of
the file. It does this by looking for the EOF (end of file) signal from the operating system.

NED University Of Engineering And Technology-Department of Electronic Engineering

41

Example of Formatted I/O:

Output:

Figure 12.1: Output

NED University Of Engineering And Technology-Department of Electronic Engineering

42

Exercise:

1. Write a program to store marks of students in a file. The program should take following
inputs form the user: name, class roll number and marks. At the end of the entries, list of marks
should be produced. The program should ask to append, replace or read the existing data.

2. Write a program to create a file test.txt in /tmp directory and write “This is testing” in that file.

3. A file record.txt contains 100 records of struct rec. Write down necessary statements to read
the record # 55 only from the file.

NED University Of Engineering And Technology-Department of Electronic Engineering

43

Object:

Lab Session 13

Learning Text and Graphics modes of Display

Theory:

There are two ways to view the display screen in Turbo C graphics model:
 The Text Mode
 The Graphics Mode

The Text Mode:
In the Text Mode, the entire screen is viewed as a grid of cells, usually 50 rows by 80 columns.
Each cell can hold a character with certain foreground and background colors (if the monitor is
capable of displaying colors). In text modes, a location on the screen is expressed in terms of
rows and columns with the upper left corner corresponding to (1,1), the column numbers increasing
from left to right and the row numbers increasing vertically downwards.

The Graphics Mode
In the Graphics Mode, the screen is seen as a matrix of pixels, each capable of displaying one or
more color. The Turbo C Graphics coordinate system has its origin at the upper left hand corner of
the physical screen with the x-axis positive to the right and the y-axis positive going downwards.

The ANSI Standard Codes
The ANSI – American National Standards Institute provides a standardized set of codes for
cursor control. For this purpose, a file named ANSI.sys is to be installed each time you turn on
your computer. Using the config.sys file, this job is automated, so that once you’ve got your
system set up, you don’t need to worry about it again. To automate the loading of ANSI.sys
follow these steps:

1. Find the file ANSI.sys in your system. Note the path.
2. Find the config.sys file. Open this file and type the following: DEVICE = path_of_ANSI.sys

3. Restart your computer.

All the ANSI codes start by the character \x1B[after which, we mention codes specific to certain
operation. Using the #define directive will make the programs easier to write and understand.

NED University Of Engineering And Technology-Department of Electronic Engineering

44

Exercise:
1. Write down program statements to initialize the graphics mode of operation.

2. Which header file is required to be included while working in (a) text mode (b) graphics
mode?

3. Name the functions used to clear the screen in (a) text mode (b) graphics mode

NED University Of Engineering And Technology-Department of Electronic Engineering

45

Object:

Lab Session 14

To explore some of the basic graphic functions in C

Theory:

In C, graphics is one of the most interested & powerful future of C programming. All video
games, animations & multimedia predominantly work using computer graphics. The aim of this
lab is to introduce the basic graphics library functions.

Example:

To run this program, you need graphics.h header file, graphics.lib library file and Graphics driver
(BGI file) in the compiler package for C. In graphics mode, all the screen co-ordinates are
mentioned in terms of pixels. Number of pixels in the screen decides resolution of the screen. In
the example, circle is drawn with x-coordinate of the center 100, y-coordinate 100 and radius 50
pixels. All the coordinates are mentioned with respect to top-left corner of the screen.

NED University Of Engineering And Technology-Department of Electronic Engineering

46

Library Functions:

initgraph():
This function

 Initializes the graphics system by loading a graphics driver from disk (or validating a registered
driver) then putting the system into graphics mode.

 initgraph also resets all graphics settings (color, palette, current position, viewport, etc.) to their
defaults, then resets graphresult to 0.

Declaration:
void far initgraph(int far *graphdriver, int far *graphmode, char far *pathtodriver);

Arguments:
*graphdriver: Integer that specifies the graphics driver to be used

*graphmode: Integer that specifies the initial graphics mode (unless *graphdriver = DETECT). If
*graphdriver = DETECT, initgraph sets *graphmode to the highest resolution available for
the detected driver.

pathtodriver: Specifies the directory path where initgraph looks for graphics drivers.

*pathtodriver: Full pathname of directory, where the driver files reside. If the driver is not found in
the specified path, the function will search the current directory for the .BGI files.

closegraph():
This function switches back the screen from graphcs mode to text mode. It clears the screen also.
A graphics program should have a closegraph function at the end of graphics. Otherwise DOS
screen will not go to text mode after running the program. Here, closegraph() is called after
getch() since screen should not clear until user hits a key.

outtextxy():
Function outtextxy() displays a string in graphical mode. You can use different fonts, text sizes,
alignments, colors and directions of the text. Parameters passed are x and y coordinates of the
position on the screen where text is to be displayed.

Declaration:
void far outtextxy(int x, int y, char *text);

circle():
circle() function takes x & y coordinates of the center of the circle with respect to left top of the
screen and radius of the circle in terms of pixels as arguments.

Declaration:
void far circle(int x, int y, int radius);

NED University Of Engineering And Technology-Department of Electronic Engineering

47

Arguments:
(x,y): Center point circle. radius: Radius of circle.

rectangle() & drawpoly():
To draw a border, rectangle and square use rectangle() in the current drawing color, line style
and thickness.
To draw polygon with n sides specifying n+1 points, the first and the last point being the same.

Declaration:
void far rectangle(int left, int top, int right, int bottom); void far drawpoly(int numpoints, int far
*polypoints);

Arguments:
(left,top) is the upper left corner of the rectangle, and (right,bottom) is its lower right corner.

numpoints: Specifies number of points

*polypoints: Points to a sequence of (numpoints x 2) integers. Each pair of integers gives the x and
y coordinates of a point on the polygon.

To draw a closed polygon with N points, numpoints should be N+1 and the array polypoints[]
should contain 2(N+1) integers with first 2 integers equal to last 2 integers.

Setting Colors:
There are 16 colors declared in graphics.h as listed in Table 14.1

Table 14.1: Colour code chart

To use these colors, use functions setcolor(), setbkcolor() and setfillstyle().

 setcolor() function sets the current drawing color. If we use setcolor(RED); and draw any shape,
line or text after that, the drawing will be in red color. You can either use color as defined above or
number like setcolor(4)

 setbkcolor() sets background color for drawing.

NED University Of Engineering And Technology-Department of Electronic Engineering

48

 setfillstyle() sets fill pattern and fill colors. After calling setfillstyle, if we use functions like
floodfill, fillpoly, bar etc, shapes will be filled with fill color and pattern set using setfillstyle.
The parameter pattern in setfillstyle is describe in Table 14.2.

Example:

Table 14.2: Fill style chart

NED University Of Engineering And Technology-Department of Electronic Engineering

49

 random(no), defined in stdlib.h returns a random number between 0 an no. The effect is by
drawing random radius, random color circles with same center and random pixels.

 kbhit(), defined in conio.h returns a nonzero value when a key is pressed in the keyboard.
So, the loop will continue until a key is pressed.

Exercise:

1) Use the graphics functions to construct the following output.

Task 1:

Task 2:

NED University Of Engineering And Technology-Department of Electronic Engineering

50

Object:

Lab Session 15

To study a method of hardware interfacing using C

Theory:

This lab will help you to control the hardware using the parallel port. Here we shall send signals to
the parallel port to control the device connected to it.

Parallel Port Description:
Parallel port interfacing is a simple and inexpensive tool for building computer controlled
devices and projects. The simplicity and ease of programming makes parallel port popular in
electronics hobbyist world.

Figure 15.1: Parallel port

Figure 15.1 shows the parallel port connector in the rear panel of a PC. It is a 25 pin female
(DB25) connector (to which printer is connected). On almost all the PCs only one parallel port is
present, but one can add more by buying and inserting ISA/PCI parallel port cards.

In computers, ports are used mainly for two reasons: Device control and communication.
We can program PC's Parallel ports for both purposes. In PC there is always a D-25 type of
female connector having 25 pins, the function of each pins are listed below in figure 15.2. Parallel
ports are easy to program and faster compared to the serial ports. But main disadvantage is it needs
more number of transmission lines. Because of this reason parallel ports are not used in long
distance communications.

Figure 15.2: 25-way Female D-type connector

NED University Of Engineering And Technology-Department of Electronic Engineering

51

The Pins having a bar over them means that the signal is inverted by the parallel port's hardware. If
a 1 were to appear on the 11 pin [S7], the PC would see a 0.

Note: Only the Data Port will be covered in this Lab.

Sending Commands to the Data Port:
Sending commands involves only the data pins [D0 to D7].Though it is possible to use the some
other pins as input, we'll stick to the basics.

Please remember that the Data pins are from pin 2 to pin 9 and not from pin 1.
The word "Parallel" denotes sending an entire set of 8 bits at once, however we can use the
individual pins of the port; sending either a 1 or a 0 to a peripheral like a motor or LED.

Example:
Now consider a Simple C program.

NED University Of Engineering And Technology-Department of Electronic Engineering

52

For a typical PC, the base address of LPT1 is 0x378 and of LPT2 is 0x278. The data register
resides at this base address, status register at base address + 1 and the control register is at base
address + 2. So once we have the base address, we can calculate the address of each registers in
this manner. Table 15.1 shows the register addresses of LPT1 and LPT2.

Table 15.1: Register addresses

0x00 is the command appearing at the output pins. The Format is in Hexadecimal So if u want to make
pin no 2 high, that's the first data pin, send 0x01 to the parallel port.

0x01 which would mean 0000 0001 for the data port. Similarly for other pins. Note:
This sample program will not work on Windows NT/2000 or XP if you run the program on these
operating systems, it will show an error. Use new Inpout32.dll on NT/2000/XP OS.

Paste the " inpout32.DLL " in the system files (C:\WINDOWS\system32 and in the folder
C:\WINDOWS\system).

This finishes your basics so that you can run your own hardware (e.g. DC motor) using parallel port.

	Note:
	Lab Session 01
	Introduction of Turbo C IDE and Programming Environment
	Invoking the IDE
	Default Directory
	Using Menus
	Opening New Window
	Implementing a Simple C Program
	Making an Executable File
	Compiling the Source Code
	Creating an Executable File with the Linker
	Compiling and linking in the IDE
	Executing a Program
	The Development Cycle
	Correcting Errors
	Exiting IDE

	Exercise:
	Object:
	To study basic building blocks of C-language such as data types and input-output functions

	Comments:
	printf() Function:
	Syntax:-
	Example:-

	scanf() Function:
	Syntax:-
	Examples:-

	Escape Sequences:
	Variables:
	Data Types:
	Format Specifiers:
	Example:
	Output:
	Exercise:
	Object:
	To study the different types of arithmetic and logical operators

	Arithmetic Operators:
	Unary Operators:
	Assignment Operators:
	Summary of Operator Precedence and Associativity:
	EXERSISE
	Object:
	Decision Making in Programming

	The if statement:
	Example:
	The if-else statement:
	Example:
	The switch Statement:
	Example:
	Conditional (Ternary) Operator:
	Example:
	Typecasting:
	Exercise:
	Object
	Looping constructs in C-Language

	Types of loops:
	The for Statement
	for (initialization of counter; loop continuation condition; increment counter

	Example:
	The while Statement:
	Example:
	The do while Statement
	Example:
	Exercise:
	Object:
	Study of Functions

	Example 1:
	Example 2:
	Recursion
	Example:
	Built-in Functions
	Exercise:
	OBJECT
	Preprocessor Directives

	Example
	Exercise:
	Object:
	To understand how to define an array, initialize an array and refer to individual element of an array

	Example:
	Output:
	Object:
	To study how to manipulate strings and become familiar with some of the library function available for strings in C

	Example:
	Output:
	Library Functions for Strings
	Example:
	Output:
	Object:
	Study of Structures and Unions

	Example:
	Exercise:
	Object:
	To study the concept of pointers in C and their applications

	Example:
	Output:
	The Indirection Operator: *
	Pointers and Arrays
	Example:
	Exercise:
	Object:
	To perform Disk I/O using C (Filling)

	Example 1:
	Different Modes of fopen() :
	Example 2:
	Example of Formatted I/O:
	Exercise:
	Object:
	Learning Text and Graphics modes of Display

	The Text Mode:
	The Graphics Mode
	The ANSI Standard Codes
	Exercise:
	Object:
	To explore some of the basic graphic functions in C

	Example:
	Library Functions:
	Declaration:
	Arguments:

	closegraph():
	outtextxy():
	Declaration:

	circle():
	Declaration:
	Arguments:

	rectangle() & drawpoly():
	Declaration:
	Arguments:

	Setting Colors:
	Example:
	Exercise:
	Task 1:
	Object:
	To study a method of hardware interfacing using C

	Parallel Port Description:
	Sending Commands to the Data Port:
	Example:

