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Experiment # 1 
 
Objective: 

 
Time domain Representation of discrete Signals 

 
Description 
 
A signal is described  by a function of one or more independent variables.  The value of 
the function (dependent variable) can be a real valued scalar quantity, a complex valued 
quantity or a vector. 
For example:  
   F1(t) = A Sin 3πt 
   F2(t) =  A ej3πt  =  A(Cos 3πt + j Sin3πt ) 
 

The signals may be classified into different categories such as analog, digital, continuous 
time discrete value and discrete time continuous value. 
A discrete time analog signal  is denoted as y(t). to emphasize  the discrete time nature of 
a signal, a signal is represented as  y(n) instead of y(t) 
A discrete time signal can be represented in any of the following forms: 
 

(i) Functional representation 
(ii) Tabular representation 
(iii) Sequence representation 
(iv) Graphical representation 

 
The set of rules for implementing the system by a program that performs the  
corresponding  mathematical operations is called  Algorithm. 
Some of the Discrete time signals have been discussed  in this experiment. 
 

 Unit Sample Sequence:   
 
is often called  the discrete time impulse  or the unit impulse. It is denoted by δ[n]. It is 
denoted by : 
  

 
 Discrete Shifted Unit Impulse 
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 Properties of Unit Impulse Function 
 
Matlab Code for Unit Impulse Generation: 

 
%  Program to generate Unit Sample 
clf; 
% generate a vector from –10 to 20 
n=-10:20;  
u=[zeros(1,10) 1 zeros(1,20)]; 
% plot the sequence 
stem(n,u);  
xlabel(‘unit sample sequence’); 
axis([-10 20 0 1.2]); 
 

 
 

Figure:  Unit Impulse 
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 Unit Step Sequence 
 It is denoted by u[n] and defined by: 
 
 
          U(n)    =     
 
 
Matlab Command To Generate Unit Step 
 
S= [ones(1,N)]; 
 
 

 Discrete Time Sinusoidal Signal 
A discrete time sinusoidal signal can  be either sine or cosine,  discrete time signal, it can 
be expressed by: 

 
Y(n) = A Sin(ωn + φ )  -∞  < n < ∞ 

                      Where ω= 2πf 
Y(n) = A Sin(2πf n + φ )  -∞  < n < ∞ 
 
Similarly discrete time sinusoidal signal for a cosine function can be expressed as  
 
Y(n) = A Cos(2πf n + φ )  -∞  < n < ∞ 
 
                Where  
   N= ineger variable (Sampler No) 
  A= Amplitude of Sinusoid 
   ω = frequency in radians per sample 

      φ = Phase in radians 
 

As the maximum value of the functions Sinφ and Cosφ is unity. A acts as a scaling factor 
giving maximum and minimum values + A 

 
Matlab Code For Generation Of A Sinusoidal Sequence 
 
% generation of a sinusoidal sequence 
n = 0: 40; 
f=0.1; 
phase=0; 
A=1.5; 
Arg = 2*pi*f*n – phase; 
X= A* cos(Arg); 
Clf;  % Clear old graph 
Stem(n,x); 
Axix([0 40 –2 2]); 
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Grid; 
Title(‘ sinusoidal sequence’); 
Xlabel(‘ time index n’) 
Ylabel(‘Amplitude’); 
Axis; 
 

 Exponential  Sequence: 
 

Discrete time Complex exponential signal  can be written as : 
 
X[n]  =  

 
Euler’s Formula  
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Matlab Code For Generation Of Exponential Signal 
 
Clf; 
C = -(1/12) + (pi/6) * I; 
K=2; 
N=0:40; 
X=k*exp(c*n); 
Subplot(2,1,1); 
Stem(n,real(x)); 
Xlabel(‘ time index n’); ylabel(‘Amplitude’); 
Title(‘ real part ‘); 
Subplot(2,1,2); 
Stem(n, imag(x)); 
Xlabel(‘ time index n’); ylabel(‘Amplitude’); 
Title(‘imaginary   part ‘); 
  
  

njAe )( αω+
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Exercise: 
 

 Write a program in Matlab to generate Exponentially damped sinusoidal signal 
 Write a program in Matlab to generate Saw tooth Waveform. 
 Write a program in Matlab to generate a Triangular Pulse 
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EXPERIMENT # 2 
 
Objective 
 

Digital Processing of Continuous Signals 
 
Description 
 
Digital processing of analog signals has following advantages over its analog counterpart. 
 

 Programmable Operations 
 Greater flexibility  
 Higher order of precision  
 Better performance. 

 
An analog signal can be converted into digital using the following steps 
 

 Sampling  
 Quantization 
 Digital Coding 

 

Sampling Of A Sinusoidal Signal 
 
It is the conversion of a continuous time signal into a discrete time signal by obtaining 
“Samples” of the continuous time signal at discrete time instants. Thus if Xa(t)  is the 
input to the sampler, the output is Xa(nT) = X(n), Where T is called the sampling 
interval. 
 
Nyquist Sampling Theorm explains, the minimum sampling rate to avoid the Aliasing 
Effect, should be equal to twice the highest frequency component of the signal 
 
Matlab Code 
 
% Illustration of the Sampling Process 
clf; 
t = 0:00005:1; 
f = 13; 
xa = cos(2*pi*f*t); 
subplot(2,1,1) 
plot(t,xa); grid; 
xlabel(‘Time, msec’); 
ylabel(‘Amplitude’); 
title(‘Continuous Time Signal x(at)’); 
axis([0 1 –1.2 1.2]); 
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subplot(2,1,2); 
T=0.1; 
N=0:T:1; 
Xs= cos(2*pi*f*n); 
K=0:length(n)-1; 
Stem(k,xs); grid; 
Xlabel(‘Time Index n’); ylabel(‘Amplitude’); 
Title(‘ discrete time signal x[n]’); 
Axis([0 (length(n)-1 –1.2 1.2]); 
 
 
Reconstruction Of Analog Signal 
 
The Analog signal can be reconstructed from the samples, provided that the sampling rate 
is sufficiently high to avoid the Aliasing Effect. 
 

Matlab Code To Explain The Aliasing Effect 
 
Clf; 
t=0:0.0005:1; 
F=13; 
Ya= cos(2*pi*f*t); 
Subplot(2,1,1); 
Plot(T,Ya); grid; 
Xlabel(‘ time, msec’); 
Ylabel(‘Amplitude’); 
Axis([0 1 –1.2 1.2]); 
Subplot(2,1,2); 
T=0.1; f=13; 
N=(0:T:1); 
Ys= cos(2*pi*f*n); 
T=linspace(-0.5,1.5,500); 
Tya=sinc((1/T)*t(:,ones(size(n))) – (1/T)*n(:,ones(size(t))))*Ys; 
Plot(n,Ys,’o’,t,Tya); grid; 
Xlabel(‘Time, msec’); ylabel(‘Amplitude’); 
Axis([0 1 –1.2 1.2]); 
 
 

Binary Equivalent Of  a Decimal Number 
 

Matlab Code 
 
%  This program determines the  Binary equivalnt of a  
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%   Decimal No. 
d = input(‘ type in a decimal fraction = ‘); 
b = input(‘ type in the desired  wordlength = ‘); 
d1= abs(d); 
beq= [zeros(1,b)]; 
for k=1: b 
   int = fix((2*d1)); 
   beq(k) = int; 
   d1 = 2*d1 – int ; 
end   
 
if sign(d) == -1; 
  bin = [1 beq]; 
else 
bin = [0 beq]; 
 
end 
disp(‘ the binary equivalent is ‘); 
disp(bin); 
 
 
Exercise 
 

 Write a program in Matlab or C Language to explain the Sampling Process 
 Write a program in Matlab or C Language to Aliasing effect  
 Write a program in Matlab or C Language to explain the Quantization   Process 
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EXPERIMENT # 3 
 
 
Objective 
 
Discrete Time systems in the Time Domain 
 
Description 
 
A discrete time system processes an input signal in the time domain  to generate an 
output signal with more desirable properties by applying an algorithm composed of 
simple operations on the input signal and its delayed  versions. 

Linear & Non Linear Systems 
 
A linear system is one that satisfies the superposition principle. The principle of 
superposition requires that the response of the system  to a weigted sum of signals  be 
equal to the corresponding  weighted sum of responses(outputs) of the system  to each of 
the individual input signals.  

Mathematically:   
 
   X[n] = α x1[n]  + β x2[n] 
 The response to the system    
                                     Y[n] = α y1[n]  + β y2[n] 

Matlab Code 
 
% Generate the input sequences 
clf; 
n = 0:40; 
a = 2;b = -3; 
x1 = cos(2*pi*0.1*n); 
x2 = cos(2*pi*0.4*n); 
x = a*x1 + b*x2; 
num = [2.2403 2.4908 2.2403]; 
den = [1 -0.4 0.75]; 
ic = [0 0]; % Set zero initial conditions 
y1 = filter(num,den,x1,ic); % Compute the output y1[n] 
y2 = filter(num,den,x2,ic); % Compute the output y2[n] 
y = filter(num,den,x,ic); % Compute the output y[n] 
yt = a*y1 + b*y2;  
d = y - yt; % Compute the difference output d[n] 
% Plot the outputs and the difference signal 
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subplot(3,1,1) 
stem(n,y); 
ylabel('Amplitude'); 
title('Output Due to Weighted Input: a \cdot x_{1}[n] + b \cdot x_{2}[n]'); 
subplot(3,1,2) 
stem(n,yt); 
ylabel('Amplitude'); 
title('Weighted Output: a \cdot y_{1}[n] + b \cdot y_{2}[n]'); 
subplot(3,1,3) 
stem(n,d); 
xlabel('Time index n');ylabel('Amplitude'); 
title('Difference Signal'); 
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Time Invariant And Time Variant Systems 
 
A system is called time invariant if its input-output characteristics do not change with 
time. A relaed system is  time invariant or shift invariant  if and only if  
 
           X(n)                       Y(n) 
 
        X(n-k)                              Y(n-k) 
 
This condition is valid for every input signal X(n)  and every time shift k. 
 

Matlab Code 
 
% Generate the input sequences 
clf; 
n = 0:40; D = 10;a = 3.0;b = -2; 
x = a*cos(2*pi*0.1*n) + b*cos(2*pi*0.4*n); 
xd = [zeros(1,D) x]; 
num = [2.2403 2.4908 2.2403]; 
den = [1 -0.4 0.75]; 
ic = [0 0]; % Set initial conditions 
% Compute the output y[n] 
y = filter(num,den,x,ic); 
% Compute the output yd[n] 
yd = filter(num,den,xd,ic); 
% Compute the difference output d[n] 
d = y - yd(1+D:41+D); 
% Plot the outputs 
subplot(3,1,1) 
stem(n,y); 
ylabel('Amplitude');  
title('Output y[n]'); grid; 
subplot(3,1,2) 
stem(n,yd(1:41)); 
ylabel('Amplitude'); 
title(['Output due to Delayed Input x[n Ð', num2str(D),']']); grid; 
subplot(3,1,3) 
stem(n,d); 
xlabel('Time index n'); ylabel('Amplitude'); 
title('Difference Signal'); grid; 
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Linear Time Invariant Discrete Time Systems 
 
Linear time Invariant discrete time system satisfies both the linearity and the time 
invariance properties. 
 

Matlab Code:   
 

Computation Of Impulse Responses Of LTI Systems 
 
Clf; 
N=40; 
Num = [2.2403 2.4908 2.2403]; 
Den = [1 –0.4 0.75]; 
Y= impz(Num,Den,N); 
Stem(Y); 
Xlabel(‘Time index n’);  
Ylabel(‘Amplitude’); 
Title(‘Impulse Response’); grid; 
 

Convolution 
 
Convolution is a mathematical way of combining two signals to form a third signal. It is 
the single most important technique in Digital Signal Processing. Using the strategy of 
impulse decomposition, systems are described by a signal called the impulse response. 
Convolution is important because it relates the three signals of interest: the input signal, 
the output signal, and the impulse response. 
 

Mathematically   
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The delta function is a normalized impulse. All of its samples have a value of zero, 
except for sample number zero, which has a value of one. The Greek letter delta, , is used 
to identify the delta function. The impulse response of a linear system, usually *[n] 
denoted by , is the output of the system when the input is a delta function. h[n]   

 
  y[n] = x[n] h[n] 

 
The output signal from a linear system is equal to the input signal convolved with the 
system's impulse response. Convolution is denoted by a star when writing equations. 
Convolution is a formal mathematical operation, just as multiplication, addition, and 
integration. Addition takes two numbers and produces a third number, while convolution 
takes two signals and produces a third signal. Convolution is used in the mathematics of 
many fields, such as probability and statistics. In linear systems, convolution is used to 
describe the relationship between three signals of interest: the input signal, the impulse 
response, and the output signal. 
 

Matlab Code 
 
clf; 
h = [3 2 1 -2 1 0 -4 0 3]; % impulse response 
x = [1 -2 3 -4 3 2 1];  % input sequence 
y = conv(h,x); 
n = 0:14; 
subplot(2,1,1); 
stem(n,y); 
xlabel('Time index n'); ylabel('Amplitude'); 
title('Output Obtained by Convolution'); grid; 
x1 = [x zeros(1,8)]; 
y1 = filter(h,1,x1); 
subplot(2,1,2); 
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stem(n,y1); 
xlabel('Time index n');  
ylabel('Amplitude'); 
title('Output Generated by Filtering'); grid; 
 
Exercise 
 

 Write a program in Matlab  to explain the Convolution  Process 
 Write a program in Matlab  to explain the Impulse Response of LTI Systems 
 Write a program in Matlab  to explain Linear and Non Linear Signals 
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EXPERIMENT # 4 
 

 

Objective  

Computation of Z Transforms and Inverse Z Transforms using Matlab Commands 

 

Description 
 
As analog filters are designed using the Laplace transform, recursive digital filters are 
developed with a parallel technique called the z-transform. The overall strategy of these 
two transforms is the same: probe the impulse response with sinusoids and exponentials 
to find the system's poles and zeros. The Laplace transforms deals with differential 
equations, the s-domain, and the s-plane. Correspondingly, the z-transform deals with 
difference equations, the z-domain, and the z-plane. However, the two techniques are not 
a mirror image of each other; the s-plane is arranged in a rectangular coordinate system, 
while the z-plane uses a polar format. Recursive digital filters are often designed by 
starting with one of the classic analog filters, such as the Butterworth, Chebyshev, or 
elliptic. A series of mathematical conversions are then used to obtain the desired digital 
filter. The Z transform of a discrete time system X[n] is defined as Power Series 
 
Mathematically 

                                           ∑
+∞=

−∞=

−=
n

n

nnxzx ][)(  

 
And the Inverse Z Transform is denoted by: 
 
                                              X(n) = Z-1 [ X(Z)] 
 
As Z Transform is the infinite Power Series; it exits only for the region for which the 
series converges (Region of convergence). Inverse Z Transform is the method of 
inverting the Z Transform of a signal to obtain the time domain representation. 
 

Z Transform Of A Discrete Time Function 
 
X(n) = [1/16n ]u(n) 
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Matlab Code 
 
syms z n 
a=ztrans(1/16^n) 
  
 
 
a = 
  
16*z/(16*z-1) 
  
Inverse Z-Transform 
 
X(n) = Z-1 [ X(Z)] 
 
X(Z) = 3*Z / (Z+1) 
 
Matlab Code 
 
syms Z n 
iztrans(3*Z/(Z+1)) 
  
ans = 
  
3*(-1)^n 
 
Pole Zero Diagram For A Function In Z Domain 
 
 Z plane command computes and display the pole-zero diagram of Z function. 
The Command is 
 
Zplane(b,a) 
 
To display the pole value, use root(a) 
To display the zero value, use root(b) 
 
X(Z) =  [Z-2 + Z-1  ] / [1-2Z-1+3Z-2] 
 

Matlab Code 
 
b=[0 1 1 ] 
a= [1 -2 +3] 
roots(a) 
roots(b) 



 17

zplane(b,a); 
 
ans = 
 
   1.0000 + 1.4142i 
   1.0000 - 1.4142i 
 
ans = 
 
    -1 
 

 

Frequency Response 
 
The Freqz function computes and display the frequency response of given Z- Transform 
of the function 
 
freqz(b,a,npt,Fs) 
 
b=  Coeff. Of Numerator 
a= Coeff. Of Denominator 
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Fs= Sampling Frequency 
Npt= no. of free points between and Fs/2 
 
X(Z) = [2+ 5Z-1+9Z-2+5Z-3+3Z-4]/ [5+ 45Z-1+2Z-2+Z-3+Z-4] 

Matlab Code 
 
b=[2 5 9 5 3] 
a= [5 45 2 1 1] 
 
freqz(b,a); 
 

 
  
 
Experiment 
 

 Write a program in Matlab to find the Z transform  
 Write a program in Matlab to find the Inverse Z transform 
 Write a program in Matlab to find Frequency Response 
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EXPERIMENT # 5 
 

 

Objective: 
 

Computation of Discrete Time Fourier Transform using Matlab commands 
 
Description 
 
Fourier analysis is a family of mathematical techniques, all based on decomposing 
signals into sinusoids. The discrete Fourier transform (DFT) is the family member used 
with digitized signals.  A signal can be either continuous or discrete, and it can be either 
periodic or Aperiodic. The combination of these two features generates the four 
categories, described below  
 

 Aperiodic-Continuous 
 
This includes, decaying exponentials and the Gaussian curve. These signals extend to 
both positive and negative infinity without repeating in a periodic pattern. The Fourier 
Transform for this type of signal is simply called the Fourier Transform. 
 

 Periodic-Continuous 
 
This includes: sine waves, square waves, and any waveform that repeats itself in a regular 
pattern from negative to positive infinity. This version of the Fourier transform is called 
the Fourier series. 
 

 Aperiodic-Discrete 
 
These signals are only defined at discrete points between positive and negative infinity, 
and do not repeat themselves in a periodic fashion. This type of Fourier transform is 
called the Discrete Time Fourier Transform. 
 

 Periodic-Discrete 
 
These are discrete signals that repeat themselves in a periodic fashion from negative to 
positive infinity. This class of Fourier Transform is sometimes called the Discrete Fourier 
Series, but is most often called the Discrete Fourier Transform. 
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Discrete Fourier Transform Computation: 
 
Mathematical Expression to calculate DFT  for an input sequence x(n) 
 

 
 
 

X(K) = ∑ x(n) e –j k Ω n T 

Ω= 2π/NT 

Matlab Code 
 
clf; 
a=[1 1 2 2]; 
x=fft(a,4); 
n=0:3; 
subplot(2,1,1); 
stem(n,abs(x)); 
xlabel('time index n'); 
 ylabel('Amplitude'); 
title('amplitude obtained by dft'); 
grid; 
subplot(2,1,2); 
stem(n,angle(x)); 
xlabel('time index n'); ylabel('Amplitude'); 
title('Phase obtained by dft'); 
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DTFT Computation: 
 

Matlab Code 
 
% Evaluation of the DTFT  
clf; 
% Compute the frequency samples of the DTFT 
w = -4*pi:8*pi/511:4*pi; 
num = [2 1];den = [1 -0.6]; 
h = freqz(num, den, w); 
% Plot the DTFT 
subplot(2,1,1) 
plot(w/pi,real(h));grid 
title('Real part of H(e^{j\omega})') 
xlabel('\omega /\pi'); 
ylabel('Amplitude'); 
subplot(2,1,2) 
plot(w/pi,imag(h));grid 
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title('Imaginary part of H(e^{j\omega})') 
xlabel('\omega /\pi'); 
ylabel('Amplitude'); 
pause 
subplot(2,1,1) 
plot(w/pi,abs(h));grid 
title('Magnitude Spectrum |H(e^{j\omega})|') 
xlabel('\omega /\pi'); 
ylabel('Amplitude'); 
subplot(2,1,2) 
plot(w/pi,angle(h));grid 
title('Phase Spectrum arg[H(e^{j\omega})]') 
xlabel('\omega /\pi'); 
ylabel('Phase in radians'); 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 23

  
 
Exercise 
 

 Write a program in Matlab to find Discrete Fourier Transform 
 Write a program in Matlab to find Inverse Discrete Fourier Transform 
 Write a program in Matlab to find the Fast Fourier Transform. 
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EXPERIMENT # 6 
 
Objective: 
 
Design of FIR filters using Matlab commands. 
 
Description: 
 
Digital filters refers to the hard ware and software implementation of the mathematical 
algorithm which accepts a digital signal as input and produces another digital signal as 
output whose wave shape, amplitude and phase response has been modified in a specified 
manner. 
 
Digital filter play very important role in DSP. Compare with analog filters they are 
preferred in number of application due to following advantages. 
 

 Truly linear phase response 
 Better frequency response 
 Filtered and unfiltered data remains saved for further use. 

 
There are two type of digital filters. 
 

 FIR (finite impulse response) filter 
 IIR (infinite impulse response) filter 

 
Description Of The Commands Used In FIR Filter Design 
 
FIR1: 
 
FIR filters design using the window method. B = FIR1(N,Wn) designs an N'th order low 
pass FIR digital filter and returns the filter coefficients in length N+1 vector B. The cut-
off frequency Wn must be between 0 < Wn < 1.0, with 1.0 corresponding to half the 
sample rate.  The filter B is real and has linear phase.  The normalized gain of the filter 
at Wn is -6 dB. 
  
B = FIR1(N,Wn,'high') designs an N'th order highpass filter. You can also use B = 
FIR1(N,Wn,'low') to design a lowpass filter. If Wn is a two-element vector, Wn = [W1 
W2], FIR1 returns an order N bandpass filter with passband  W1 < W < W2. 
    
B = FIR1(N,Wn,'stop') is a bandstop filter if Wn = [W1 W2]. You can also specify If Wn 
is a multi-element vector, Wn = [W1 W2 W3 W4 W5 ... WN], FIR1 returns an order N 
multiband filter with bands 0 < W < W1, W1 < W < W2, ..., WN < W < 1. 
 

B = FIR1(N,Wn,'DC-1') makes the first band a passband. 
B = FIR1(N,Wn,'DC-0') makes the first band a stopband. 
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By default FIR1 uses a Hamming window.  Other available windows, including Boxcar, 
Hann, Bartlett, Blackman, Kaiser and Chebwin can be specified with an optional trailing 
argument.  For example, B = FIR1(N,Wn,kaiser(N+1,4)) uses a Kaiser window with 
beta=4. B = FIR1(N,Wn,'high',chebwin(N+1,R)) uses a Chebyshev window. 
  
For filters with a gain other than zero at Fs/2, e.g., highpass and bandstop filters, N must 
be even.  Otherwise, N will be     incremented by one.  In this case the window length 
should be specified as N+2. 
     
By default, the filter is scaled so the center of the first pass band has magnitude exactly 
one after windowing. Use a trailing 'noscale' argument to prevent this scaling, e.g.  
  
             B = FIR1(N,Wn,'noscale') 

B = FIR1(N,Wn,'high','noscale') 
 B = FIR1(N,Wn,wind,'noscale'). 

 
You can also specify the scaling explicitly, e.g. FIR1(N,Wn,'scale'), etc. 
 
FREQZ Digital Filter Frequency Response. 
 
[H,W] = FREQZ(B,A,N) returns the N-point complex frequency response vector H and 
the N-point frequency vector W in radians/sample of the filter: given numerator and 
denominator coefficients in vectors B and A. The frequency response is evaluated at N 
points equally spaced around the upper half of the unit circle. If N isn't specified, it 
defaults to 512. 
  

[H,W] = FREQZ(B,A,N,'whole') uses N points around the whole unit circle. 
 
H = FREQZ(B,A,W) returns the frequency response at frequencies  designated in vector 
W, in radians/sample (normally between 0 and pi). 
  
[H,F] = FREQZ(B,A,N,Fs) and [H,F] = FREQZ(B,A,N,'whole',Fs) return frequency 
vector F (in Hz), where Fs is the sampling frequency (in Hz). 
     
H = FREQZ(B,A,F,Fs) returns the complex frequency response at the frequencies 
designated in vector F (in Hz), where Fs is the sampling frequency (in Hz). 
  
[H,W,S] = FREQZ(...) or [H,F,S] = FREQZ(...) returns plotting information to be used 
with FREQZPLOT.  S is a structure whose fields can be altered to obtain different 
frequency response plots.  For more information see the help for FREQZPLOT. 
  
FREQZ(B,A,...) with no output arguments plots the magnitude and unwrapped phase of 
the filter in the current figure window. 
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Designing A Low Pass Filter: 
 
Suppose out target is to pass all frequencies below 1200 Hz  
 
fs=8000; % sampling frequency 
n=50;       % order of the filter 
w=1200/ (fs/2);  
b=fir1(n,w,'low'); % Zeros of the filter 
freqz(b,1,128,8000); % Magnitude and Phase Plot of the filter 
figure(2) 
[h,w]=freqz(b,1,128,8000); 
plot(w,abs(h)); % Normalized Magnitude Plot 
grid 
figure(3) 
zplane(b,1); 
 
Designing High Pass Filter: 
 
Now our target is to pass all frequencies above 1200 Hz  
 
fs=8000;  
n=50;       
w=1200/ (fs/2); b=fir1(n,w,'high'); 
freqz(b,1,128,8000); 
figure(2) 
[h,w]=freqz(b,1,128,8000); 
plot(w,abs(h)); % Normalized Magnitude Plot 
grid 
figure(3) 
zplane(b,1); 
 
Designing High Pass Filter: 
 
fs=8000; 
n=50;        
w=1200/ (fs/2);  
b=fir1(n,w,'high'); 
freqz(b,1,128,8000); 
figure(2) 
[h,w]=freqz(b,1,128,8000); 
plot(w,abs(h)); % Normalized Magnitude Plot 
grid 
figure(3) 
zplane(b,1); 
 



 27

 
Designing Band Pass Filter: 
 
fs=8000; 
n=40; 
b=fir1(n,[1200/4000 1800/4000],’bandpass’); 
freqz(b,1,128,8000) 
figure(2) 
[h,w]=freqz(b,1,128,8000); 
plot(w,abs(h)); % Normalized Magnitude Plot 
grid 
figure(3) 
zplane(b,1); 
 
Designing Band Pass Filter: 
 
fs=8000; 
n=40; 
b=fir1(n,[1200/4000 2800/4000],’stop’); 
freqz(b,1,128,8000) 
figure(2) 
[h,w]=freqz(b,1,128,8000); 
plot(w,abs(h)); % Normalized Magnitude Plot 
grid 
figure(3) 
zplane(b,1); 
 
Designing Notch Filter 
 
fs=8000; 
n=40; 
b=fir1(n,[1500/4000 1550/4000],'stop'); 
freqz(b,1,128,8000) 
figure(2) 
[h,w]=freqz(b,1,128,8000); 
plot(w,abs(h)); % Normalized Magnitude Plot 
grid 
figure(3) 
zplane(b,1); 
 
Designing Multi Band Filter 
 
n=50; 
w=[0.2 0.4 0.6]; 
b=fir1(n,w); 
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freqz(b,1,128,8000) 
figure(2) 
[h,w]=freqz(b,1,128,8000); 
plot(w,abs(h)); % Normalized Magnitude Plot 
grid 
figure(3) 
zplane(b,1); 
 
Problems: 
 
Design a band pass filter and band stop filter with the help of LPF and HPF  
The filter has following specifications. 
Band pass = 1200 – 2800 Hz 
Band stop =1200-2800 Hz 
 

 
 

 
 
 
Design a Multi band filter using HPF and LPF 
 
The filter has following specifications  
Pass  band=1200 Hz – 1800 Hz 
Stop band = 1900 Hz – 2200 Hz 
Pass band = 2300 Hz – 2700 Hz 
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EXPERIMENT # 7 
 
Objective: 
 
Designing of IIR filters by Matlab commands. 
 
Description: 
 
Matlab contains various routines for design and analyzing digital filter IIR. Most of these 
are part of the signal processing tool box. A selection of these filters is listed below. 
 

 Buttord ( for calculating the order of filter) 
 Butter   ( creates an IIR filter) 
 Ellipord ( for calculating the order of filter) 
 Ellip (creates an IIR filter) 
 Cheb1ord (for calculating the order of filter) 
 Cheyb1 (creates an IIR filter) 

 
Explanation Of The Commands For Filter Design: 
 
Buttord: 
 
Butterworth filter order selection. 
 
[N, Wn] = BUTTORD(Wp, Ws, Rp, Rs) returns the order N of the lowest order digital 
Butterworth filter that loses no more than Rp dB in the pass band and has at least Rs dB 
of attenuation in the stop band. 
   
Wp and Ws are the pass band and stop band edge frequencies, normalized from 0 to 1 
(where 1 corresponds to pi radians/sample). For example 
  

      Low pass:    Wp = .1,      Ws = .2 
      High pass:   Wp = .2,      Ws = .1 

Band pass:   Wp = [.2 .7], Ws = [.1 .8] 
Band stop:   Wp = [.1 .8], Ws = [.2 .7] 

 
BUTTORD also returns Wn, the Butterworth natural frequency (or, the "3 dB 
frequency") to use with BUTTER to achieve the specifications. 
  
[N, Wn] = BUTTORD(Wp, Ws, Rp, Rs, 's') does the computation for an  analog filter, in 
which case Wp and Ws are in radians/second. When Rp is chosen as 3 dB, the Wn in 
BUTTER is equal to Wp in BUTTORD.   
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Ellipord: 
 
Elliptic filter order selection. 
 
[N, Wn] = ELLIPORD(Wp, Ws, Rp, Rs) returns the order N of the lowest order digital 
elliptic filter that loses no more than Rp dB in the pass band and has at least Rs dB of 
attenuation in the stop band  Wp and Ws are the pass band and stop band edge 
frequencies, normalized from 0 to 1 (where 1 corresponds to pi radians/sample). For 
example, 
 

      Low pass:    Wp = .1,      Ws = .2 
      High pass:   Wp = .2,      Ws = .1 

Band pass:   Wp = [.2 .7], Ws = [.1 .8] 
Band stop:   Wp = [.1 .8], Ws = [.2 .7] 

 
ELLIPORD also returns Wn, the elliptic natural frequency to use with ELLIP to achieve 
the specifications. 
  
[N, Wn] = ELLIPORD(Wp, Ws, Rp, Rs, 's') does the computation for an analog filter, in 
which case Wp and Ws are in radians/second. NOTE: If Rs is much greater than Rp, or 
Wp and Ws are very close, the estimated order can be infinite due to limitations of 
numerical precision. 
 
Cheb1ord: 
 
Chebyshev Type I filter order selection. 
 
[N, Wn] = CHEB1ORD(Wp, Ws, Rp, Rs) returns the order N of the lowest order digital 
Chebyshev Type I filter that loses no more than Rp dB in the pass band and has at least 
Rs dB of attenuation in the stop band. Wp and Ws are the pass band and stop band edge 
frequencies, normalized from 0 to 1 (where 1 corresponds to pi radians/sample). For 
example, 

      Low pass:    Wp = .1,      Ws = .2 
      High pass:   Wp = .2,      Ws = .1 

Band pass:   Wp = [.2 .7], Ws = [.1 .8] 
Band stop:   Wp = [.1 .8], Ws = [.2 .7] 

 
CHEB1ORD also returns Wn, the Chebyshev natural frequency to use with CHEBY1 to 
achieve the specifications. 
  
[N, Wn] = CHEB1ORD(Wp, Ws, Rp, Rs, 's') does the computation for an analog filter, in 
which case Wp and Ws are in radians/second. 
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Butter: 
 
Butterworth digital and analog filter design. 
 
[B,A] = BUTTER(N,Wn) designs an Nth order lowpass digital Butterworth filter and 
returns the filter coefficients in length N+1 vectors B (numerator) and A (denominator). 
The coefficients are listed in descending powers of z. The cutoff frequency Wn must be 
0.0 < Wn < 1.0, with 1.0 corresponding to half the sample rate. 
  
    If Wn is a two-element vector, Wn = [W1 W2], BUTTER returns an order 2N 
bandpass filter with passband  W1 < W < W2. 
 
[B,A] = BUTTER(N,Wn,'high') designs a highpass filter.  
[B,A] = BUTTER(N,Wn,'stop') is a bandstop filter if Wn = [W1 W2]. 
     
When used with three left-hand arguments, as in [Z,P,K] = BUTTER(...), the zeros and 
poles are returned in length N column vectors Z and P, and the gain in scalar K. When 
used with four left-hand arguments, as in [A,B,C,D] = BUTTER(...), state-space matrices 
are returned.  
 
BUTTER(N,Wn,'s'), BUTTER(N,Wn,'high','s') and BUTTER(N,Wn,'stop','s') design 
analog Butterworth filters.  In this case, Wn is in [rad/s] and it can be greater than 1.0. 
 
Ellip:  
 
Elliptic or Cauer digital and analog filter design. 
 
[B,A] = ELLIP(N,Rp,Rs,Wn) designs an Nth order low pass digital elliptic filter with Rp 
decibels of peak-to-peak ripple and a minimum stop band attenuation of Rs decibels. 
ELLIP returns the filter   coefficients in length N+1 vectors B (numerator) and A 
(denominator).The cutoff frequency Wn must be 0.0 < Wn < 1.0, with 1.0 corresponding 
to half the sample rate.  Use Rp = 0.5 and Rs = 20 as starting points, if you are unsure 
about choosing them. 
  
If Wn is a two-element vector, Wn = [W1 W2], ELLIP returns an order 2N band pass 
filter with pass band  W1 < W < W2. [B,A] = ELLIP(N,Rp,Rs,Wn,'high') designs a high 
pass filter. [B,A] = ELLIP(N,Rp,Rs,Wn,'stop') is a band stop filter if Wn = [W1 W2]. 
  
When used with three left-hand arguments, as in [Z,P,K] = ELLIP(...), the zeros and 
poles are returned in length N column vectors Z and P, and the gain in scalar K. When 
used with four left-hand arguments, as in [A,B,C,D] = ELLIP(...), state-space matrices 
are returned.  
  
ELLIP(N,Rp,Rs,Wn,'s'), ELLIP(N,Rp,Rs,Wn,'high','s') and  ELLIP(N,Rp,Rs,Wn,'stop','s') 
design analog elliptic filters. In this case, Wn is in [rad/s] and it can be greater than 1.0. 
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Cheby1:  
 
Chebyshev Type I digital and analog filter design. 
 
[B,A] = CHEBY1(N,R,Wn) designs an Nth order lowpass digital Chebyshev filter with R 
decibels of peak-to-peak ripple in the passband. CHEBY1 returns the filter coefficients in 
length N+1 vectors B (numerator) and A (denominator). The cutoff frequency Wn must 
be 0.0 < Wn < 1.0, with 1.0 corresponding to half the sample rate.  Use R=0.5 as a 
starting point, if you are unsure about choosing R. 
  
If Wn is a two-element vector, Wn = [W1 W2], CHEBY1 returns an order 2N bandpass 
filter with passband  W1 < W < W2. 
 
[B,A] = CHEBY1(N,R,Wn,'high') designs a highpass filter. 
[B,A] = CHEBY1(N,R,Wn,'stop') is a bandstop filter if Wn = [W1 W2]. 
  
When used with three left-hand arguments, as in [Z,P,K] = CHEBY1(...), the zeros and 
poles are returned in  length N column vectors Z and P, and the gain in scalar K.  
  
When used with four left-hand arguments, as in [A,B,C,D] = CHEBY1(...), state-space 
matrices are returned.  
 
CHEBY1(N,R,Wn,'s'), CHEBY1(N,R,Wn,'high','s') and CHEBY1(N,R,Wn,'stop','s') 
design analog Chebyshev Type I filters.In this case, Wn is in [rad/s] and it can be greater 
than 1.0. 
 
Buttord and Butter Filter: 
 
Designing IIR Low Pass Filter: 
 
Suppose our target is to design a filter to pass all frequencies below 1200 Hz with pass 
band ripples = 1 dB and minimum stop band attenuation of 50 dB at 1500 Hz. The 
sampling frequency for the filter is 8000 Hz;  
 
fs=8000; 
[n,w]=buttord(1200/4000,1500/4000,1,50); % finding the order of the filter 
[b,a]=butter(n,w); % finding zeros and poles for filter 
figure(1) 
freqz(b,a,512,8000);  
 
figure(2) 
[h,q] = freqz(b,a,512,8000); 
plot(q,abs(h)); % Normalized Magnitude plot 
grid 
 
figure(3) 
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f=1200:2:1500; 
freqz(b,a,f,8000) % plotting the Transition band 
 
figure(4) 
zplane(b,a) % pole zero constellation diagram 
 
Designing IIR High Pass Filter: 
 
We will consider same filter but our target now is to pass all frequencies above 1200 Hz 
 
[n,w]=buttord(1200/5000,1500/5000,1,50); 
[b,a]=butter(n,w,'high'); 
figure(1) 
freqz(b,a,512,10000); 
 
figure(2) 
[h,q] = freqz(b,a,512,8000); 
plot(q,abs(h)); % Normalized Magnitude plot 
grid 
 
figure(3) 
f=1200:2:1500; 
freqz(b,a,f,10000) 
 
figure(4) 
zplane(b,a) 
 
 
Designing IIR Band Pass Filter: 
 
Now we wish to design a filter to pass all frequencies between 1200 Hz and 2800 Hz 
with pass band ripples = 1 dB and minimum stop band attenuation of 50 dB. The 
sampling frequency for the filter is 8000 Hz;  
 
[n,w]=buttord([1200/4000,2800/4000],[400/4000, 3200/4000],1,50); 
[b,a]=butter(n,w,'bandpass'); 
figure(1) 
freqz(b,a,128,8000) 
 
figure(2) 
[h,w]=freqz(b,a,128,8000); 
plot(w,abs(h)) 
grid 
 
figure(3) 
f=600:2:1200; 
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freqz(b,a,f,8000); % Transition Band 
 
figure(4) 
f=2800:2:3200; 
freqz(b,a,f,8000); % Transition Band 
 
figure(5) 
zplane(b,a) 
 
 
Designing IIR Band Stop Filter: 
 
[n,w]=buttord([1200/4000,2800/4000],[400/4000, 3200/4000],1,50); 
[b,a]=butter(n,w,'stop'); 
figure(1) 
freqz(b,a,128,8000) 
[h,w]=freqz(b,a,128,8000); 
 
figure(2) 
plot(w,abs(h)); 
grid 
 
figure(3)  
f=600:2:1200; 
freqz(b,a,f,8000); % Transition Band 
 
figure(4) 
f=2800:2:3200; 
freqz(b,a,f,8000); % Transition Band 
 
figure(5) 
zplane(b,a); 
 
 
Problems  
 
Design all above filter using following commands 
 

 Ellipord( ) 
 Ellip( ) 
 Cheb1ord( ) 
 Cheby1( ) 

 
Compare the results of the butter worth LPF with ellip LPF and cheby1 LPF on following 
basis 
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 Order 
 Minimum stop band attenuation achieved 
 Linearity in the phase plots with in the pass band and outside. 
 Pole –zeros plot which filter appears to have pole most closely to the unit circle. 
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EXPERIMENT # 8 
 
Objective: 
 
Filter designing by Matlab tools. 
 
Description: 
 
There are two tool boxes available for designing, analyzing and for viewing different 
responses (Impulse & Step) of FIR and IIR filters.  
 

 fvtool 
 fdatool 

 
Filter Visualization Tool: 
 
FVTOOL is a Graphical User Interface (GUI) that allows you to analyze digital filters.    
FVTOOL (B,A) launches the Filter Visualization Tool and computes the magnitude 
Response for the filter defined in B and A. FVTOOL(B,A,B1,A1,...) will perform an 
analysis on multiple filters. The real advantage of this visualization tool is that we can 
view the magnitude response and phase response simultaneously, the impulse response, 
step response the coefficients of the filter etc 
 
Let us consider a Low Pass FIR filter of order 30 which passes all frequencies below 
2000 Hz with sampling rate of 8000 Hz. 
 
b=fir1(30,2000/4000,’low’); 
fvtool(b,1) 
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Filter Design & Analysis Tool. 
 
FDATOOL launches the Filter Design & Analysis Tool (FDATool). FDATool is a 
Graphical User Interface (GUI) that allows you to design or import, and analyze digital 
FIR and IIR filters.  
If the Filter Design Toolbox is installed, FDATool seamlessly integrates advanced filter 
design methods and the ability to quantize filters. 
 

 
 
 
Now we will design a LPF on fdatool, the specifications for the filter are shown in 
respective columns of FDA tool 
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Problems: 
 
Design IIR butter worth filter with following specifications 
 

 -50 dB or more for 0 to 1200 Hz  ( Stop Band Attenuation ) 
 -1 dB or less from 2000 Hz to 4000 Hz ( Pass Band Characteristics ) 
 -50 dB or more above 6000 Hz ( Stop Band Attenuation ) 
 Sampling frequency 16000 Hz  
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EXPERIMENT # 9 
 
Objective:  
 
Design an IIR filter to suppress frequencies of 5 Hz and 30 Hz from given signal. 
 
Description: 
 
We know from Fourier analysis that signals can be described by a summation of 
frequency components. Typically, a filter is used to enhance signals by attenuating 
unwanted frequency components and retaining desired frequency components. In this 
practical we begin by creating a signals ‘s’ with three sinusoidal components ( at 5,15,30 
Hz) and a time vector ‘t’ of 100 samples with a sampling rate of 100 Hz, and displaying it 
in the time domain. The Matlab commands are shown below. 
 
fs=100; 
t=(1:100)/fs; 
s=sin(2*pi*t*5)+sin(2*pi*t*15)+sin(2*pi*t*30); 
plot(t,s) 
grid 
 

 
 
Now we design a filter to keep the 15 Hz sinusoid and eliminate the 5 and 30 Hz 
sinusoids. We use the functions ellipord and ellip to create an infinite impulse response 
(IIR) filter with a pass band from 10 to 20 Hz. The ellipord function requires the 
specification of pass band corner frequencies, minimum transition band frequencies near 
the pass band corner frequencies, the maximum pass band ripple in decibels (dB), and the 
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minimum stop band attenuation in dB. In this example, we choose a transition frequency 
to be ±5 Hz near the pass band corners, with a maximum of 0.1 dB ripple in the pass 
band, and a minimum of 40 dB attenuation in the stop bands. We start by determining the 
minimum order (pass band and stop band frequencies are normalized to the Nyquist 
frequency): 
 
wp1 = 10/50; 
wp2 = 20/50;  
ws1 = 5/50; 
ws2 = 25/50; 
wp = [Wp1 Wp2]; 
ws = [Ws1 Ws2]; 
rp = 0.1; 
rs = 40; 
[n,wn] = ellipord(wp,ws,rp,rs); 
 
ellipord returns an order of 5, the minimum possible order for a low pass prototype that 
will meet the constraints upon transformation to a band pass filter. When we apply this 
order to the ellip function, internally we transform the low pass prototype to a band pass 
filter using the function lp2bp. This doubles the order, making n = 10. Next we use n, the 
order, and Wn, the pass band corner frequencies, to actually design the filter. We also use 
freqz, a tool for computing and displaying the frequency response of the descriptive 
transfer function. When called with no left-hand-side arguments (i.e., return values), 
freqz displays the magnitude and phase response of the filter normalized to the Nyquist 
frequency. 
  
[b,a] = ellip(n,.1,40,w); 
freqz(b,a,128,100) 
[h,w]=freqz(b,a,128,100); 
plot(w,abs(h)); 
grid 
title(‘Normalized Magnitude Response’); 
axis([0 50 0 1.2]); 
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figure(4) 
sf=filter(b,a,s); % Time domain Response of the Filter 
plot(t,sf) 
grid 
xlabel('Time (seconds)'); 
ylabel('Signal Amplitude'); 
title('Filtered Signal only 15 Hz frequency'); 

 

 
 
 

Problem: 
 
Design an IIR filter to remove 100 and 150 frequencies from above signal. 

 
x=1+sin (2*pi*50*t) + sin (2*pi*100*t) + 0.5 sin (2*pi*125*t) + 0.25 sin (2*pi*150*t); 

 


