
PRACTICAL WORK BOOK
For The Course
EE-393 Digital Signal Processing

For

Third Year
(Telecommunication Engineering)

Name of Student: ___

Class: ________________________________Batch :____________________

Discipline: __

Class Roll No.: ________________Examination Seat No._________________

Complied by: Engr. Syed Moosa Ahmed (Lecturer) & Engr. Aamir Zeb (Assistant Professor)
Z

Supervised by: Dr. Abdul Qadir (Professor)

ELECTRICAL FILTERS LAB

DEPARTMENT OF ELECTRICAL ENGINEERING
NED University of Engineering & Technology, Karachi-75270, Pakistan

INDEX

S.
No.

Date Experiments Page
No

Signature

1 Time domain Representation of discrete signals

1-5

2 Digital Processing of Continuous Signals

6-8

3 Discrete Time systems in the Time Domain

9-14

4

Computation of Z transforms and inverse Z
transform using Maltab

15-18

5

Discrete Fourier Transform

19-23

6

Design of FIR filters using Matlab commands.

24-29

7

Designing of IIR filters by Matlab commands.

30-36

8

Filter designing by Matlab tools.

37-39

9 Design an IIR filter to suppress frequencies of 5
Hz and 30 Hz from given signal.

40-42

 1

Experiment # 1

Objective:

Time domain Representation of discrete Signals

Description

A signal is described by a function of one or more independent variables. The value of
the function (dependent variable) can be a real valued scalar quantity, a complex valued
quantity or a vector.
For example:
 F1(t) = A Sin 3πt
 F2(t) = A ej3πt = A(Cos 3πt + j Sin3πt)

The signals may be classified into different categories such as analog, digital, continuous
time discrete value and discrete time continuous value.
A discrete time analog signal is denoted as y(t). to emphasize the discrete time nature of
a signal, a signal is represented as y(n) instead of y(t)
A discrete time signal can be represented in any of the following forms:

(i) Functional representation
(ii) Tabular representation
(iii) Sequence representation
(iv) Graphical representation

The set of rules for implementing the system by a program that performs the
corresponding mathematical operations is called Algorithm.
Some of the Discrete time signals have been discussed in this experiment.

 Unit Sample Sequence:

is often called the discrete time impulse or the unit impulse. It is denoted by δ[n]. It is
denoted by :

 Discrete Shifted Unit Impulse





≠
=

=
0
0

0
1

][
,n
,n

nδ





≠
=

=−
k,n
k,n

kn
0
1

][δ

 2

 Properties of Unit Impulse Function

Matlab Code for Unit Impulse Generation:

% Program to generate Unit Sample
clf;
% generate a vector from –10 to 20
n=-10:20;
u=[zeros(1,10) 1 zeros(1,20)];
% plot the sequence
stem(n,u);
xlabel(‘unit sample sequence’);
axis([-10 20 0 1.2]);

Figure: Unit Impulse

∑

∑

∞

−∞=

−∞=

−=

−=−
=

=

−−=

k

n

k

knkxnx

knkxknnx
nxnnx

knu

nunun

][][][

][][][][
][]0[][][

][][

]1[][][

δ

δδ
δδ

δ

δ

 3

 Unit Step Sequence
 It is denoted by u[n] and defined by:

 U(n) =

Matlab Command To Generate Unit Step

S= [ones(1,N)];

 Discrete Time Sinusoidal Signal
A discrete time sinusoidal signal can be either sine or cosine, discrete time signal, it can
be expressed by:

Y(n) = A Sin(ωn + φ) -∞ < n < ∞

 Where ω= 2πf
Y(n) = A Sin(2πf n + φ) -∞ < n < ∞

Similarly discrete time sinusoidal signal for a cosine function can be expressed as

Y(n) = A Cos(2πf n + φ) -∞ < n < ∞

 Where
 N= ineger variable (Sampler No)
 A= Amplitude of Sinusoid
 ω = frequency in radians per sample

 φ = Phase in radians

As the maximum value of the functions Sinφ and Cosφ is unity. A acts as a scaling factor
giving maximum and minimum values + A

Matlab Code For Generation Of A Sinusoidal Sequence

% generation of a sinusoidal sequence
n = 0: 40;
f=0.1;
phase=0;
A=1.5;
Arg = 2*pi*f*n – phase;
X= A* cos(Arg);
Clf; % Clear old graph
Stem(n,x);
Axix([0 40 –2 2]);





<
≥

0
0

0
1

,n
,n

 4

Grid;
Title(‘ sinusoidal sequence’);
Xlabel(‘ time index n’)
Ylabel(‘Amplitude’);
Axis;

 Exponential Sequence:

Discrete time Complex exponential signal can be written as :

X[n] =

Euler’s Formula

)(
2
1sin

)(
2
1cos

sincos

θθ

θθ

θ

θ

θ

θθ

jj

jj

j

ee
j

ee

je

−

−

−=

+=

+=

Matlab Code For Generation Of Exponential Signal

Clf;
C = -(1/12) + (pi/6) * I;
K=2;
N=0:40;
X=k*exp(c*n);
Subplot(2,1,1);
Stem(n,real(x));
Xlabel(‘ time index n’); ylabel(‘Amplitude’);
Title(‘ real part ‘);
Subplot(2,1,2);
Stem(n, imag(x));
Xlabel(‘ time index n’); ylabel(‘Amplitude’);
Title(‘imaginary part ‘);

njAe)(αω+

 5

Exercise:

 Write a program in Matlab to generate Exponentially damped sinusoidal signal
 Write a program in Matlab to generate Saw tooth Waveform.
 Write a program in Matlab to generate a Triangular Pulse

 6

EXPERIMENT # 2

Objective

Digital Processing of Continuous Signals

Description

Digital processing of analog signals has following advantages over its analog counterpart.

 Programmable Operations
 Greater flexibility
 Higher order of precision
 Better performance.

An analog signal can be converted into digital using the following steps

 Sampling
 Quantization
 Digital Coding

Sampling Of A Sinusoidal Signal

It is the conversion of a continuous time signal into a discrete time signal by obtaining
“Samples” of the continuous time signal at discrete time instants. Thus if Xa(t) is the
input to the sampler, the output is Xa(nT) = X(n), Where T is called the sampling
interval.

Nyquist Sampling Theorm explains, the minimum sampling rate to avoid the Aliasing
Effect, should be equal to twice the highest frequency component of the signal

Matlab Code

% Illustration of the Sampling Process
clf;
t = 0:00005:1;
f = 13;
xa = cos(2*pi*f*t);
subplot(2,1,1)
plot(t,xa); grid;
xlabel(‘Time, msec’);
ylabel(‘Amplitude’);
title(‘Continuous Time Signal x(at)’);
axis([0 1 –1.2 1.2]);

 7

subplot(2,1,2);
T=0.1;
N=0:T:1;
Xs= cos(2*pi*f*n);
K=0:length(n)-1;
Stem(k,xs); grid;
Xlabel(‘Time Index n’); ylabel(‘Amplitude’);
Title(‘ discrete time signal x[n]’);
Axis([0 (length(n)-1 –1.2 1.2]);

Reconstruction Of Analog Signal

The Analog signal can be reconstructed from the samples, provided that the sampling rate
is sufficiently high to avoid the Aliasing Effect.

Matlab Code To Explain The Aliasing Effect

Clf;
t=0:0.0005:1;
F=13;
Ya= cos(2*pi*f*t);
Subplot(2,1,1);
Plot(T,Ya); grid;
Xlabel(‘ time, msec’);
Ylabel(‘Amplitude’);
Axis([0 1 –1.2 1.2]);
Subplot(2,1,2);
T=0.1; f=13;
N=(0:T:1);
Ys= cos(2*pi*f*n);
T=linspace(-0.5,1.5,500);
Tya=sinc((1/T)*t(:,ones(size(n))) – (1/T)*n(:,ones(size(t))))*Ys;
Plot(n,Ys,’o’,t,Tya); grid;
Xlabel(‘Time, msec’); ylabel(‘Amplitude’);
Axis([0 1 –1.2 1.2]);

Binary Equivalent Of a Decimal Number

Matlab Code

% This program determines the Binary equivalnt of a

 8

% Decimal No.
d = input(‘ type in a decimal fraction = ‘);
b = input(‘ type in the desired wordlength = ‘);
d1= abs(d);
beq= [zeros(1,b)];
for k=1: b
 int = fix((2*d1));
 beq(k) = int;
 d1 = 2*d1 – int ;
end

if sign(d) == -1;
 bin = [1 beq];
else
bin = [0 beq];

end
disp(‘ the binary equivalent is ‘);
disp(bin);

Exercise

 Write a program in Matlab or C Language to explain the Sampling Process
 Write a program in Matlab or C Language to Aliasing effect
 Write a program in Matlab or C Language to explain the Quantization Process

 9

EXPERIMENT # 3

Objective

Discrete Time systems in the Time Domain

Description

A discrete time system processes an input signal in the time domain to generate an
output signal with more desirable properties by applying an algorithm composed of
simple operations on the input signal and its delayed versions.

Linear & Non Linear Systems

A linear system is one that satisfies the superposition principle. The principle of
superposition requires that the response of the system to a weigted sum of signals be
equal to the corresponding weighted sum of responses(outputs) of the system to each of
the individual input signals.

Mathematically:

 X[n] = α x1[n] + β x2[n]
 The response to the system
 Y[n] = α y1[n] + β y2[n]

Matlab Code

% Generate the input sequences
clf;
n = 0:40;
a = 2;b = -3;
x1 = cos(2*pi*0.1*n);
x2 = cos(2*pi*0.4*n);
x = a*x1 + b*x2;
num = [2.2403 2.4908 2.2403];
den = [1 -0.4 0.75];
ic = [0 0]; % Set zero initial conditions
y1 = filter(num,den,x1,ic); % Compute the output y1[n]
y2 = filter(num,den,x2,ic); % Compute the output y2[n]
y = filter(num,den,x,ic); % Compute the output y[n]
yt = a*y1 + b*y2;
d = y - yt; % Compute the difference output d[n]
% Plot the outputs and the difference signal

 10

subplot(3,1,1)
stem(n,y);
ylabel('Amplitude');
title('Output Due to Weighted Input: a \cdot x_{1}[n] + b \cdot x_{2}[n]');
subplot(3,1,2)
stem(n,yt);
ylabel('Amplitude');
title('Weighted Output: a \cdot y_{1}[n] + b \cdot y_{2}[n]');
subplot(3,1,3)
stem(n,d);
xlabel('Time index n');ylabel('Amplitude');
title('Difference Signal');

 11

Time Invariant And Time Variant Systems

A system is called time invariant if its input-output characteristics do not change with
time. A relaed system is time invariant or shift invariant if and only if

 X(n) Y(n)

 X(n-k) Y(n-k)

This condition is valid for every input signal X(n) and every time shift k.

Matlab Code

% Generate the input sequences
clf;
n = 0:40; D = 10;a = 3.0;b = -2;
x = a*cos(2*pi*0.1*n) + b*cos(2*pi*0.4*n);
xd = [zeros(1,D) x];
num = [2.2403 2.4908 2.2403];
den = [1 -0.4 0.75];
ic = [0 0]; % Set initial conditions
% Compute the output y[n]
y = filter(num,den,x,ic);
% Compute the output yd[n]
yd = filter(num,den,xd,ic);
% Compute the difference output d[n]
d = y - yd(1+D:41+D);
% Plot the outputs
subplot(3,1,1)
stem(n,y);
ylabel('Amplitude');
title('Output y[n]'); grid;
subplot(3,1,2)
stem(n,yd(1:41));
ylabel('Amplitude');
title(['Output due to Delayed Input x[n Ð', num2str(D),']']); grid;
subplot(3,1,3)
stem(n,d);
xlabel('Time index n'); ylabel('Amplitude');
title('Difference Signal'); grid;

 12

Linear Time Invariant Discrete Time Systems

Linear time Invariant discrete time system satisfies both the linearity and the time
invariance properties.

Matlab Code:

Computation Of Impulse Responses Of LTI Systems

Clf;
N=40;
Num = [2.2403 2.4908 2.2403];
Den = [1 –0.4 0.75];
Y= impz(Num,Den,N);
Stem(Y);
Xlabel(‘Time index n’);
Ylabel(‘Amplitude’);
Title(‘Impulse Response’); grid;

Convolution

Convolution is a mathematical way of combining two signals to form a third signal. It is
the single most important technique in Digital Signal Processing. Using the strategy of
impulse decomposition, systems are described by a signal called the impulse response.
Convolution is important because it relates the three signals of interest: the input signal,
the output signal, and the impulse response.

Mathematically

∑
∞

−∞=

−=
k

knhkxny][][][

 13

The delta function is a normalized impulse. All of its samples have a value of zero,
except for sample number zero, which has a value of one. The Greek letter delta, , is used
to identify the delta function. The impulse response of a linear system, usually *[n]
denoted by , is the output of the system when the input is a delta function. h[n]

 y[n] = x[n] h[n]

The output signal from a linear system is equal to the input signal convolved with the
system's impulse response. Convolution is denoted by a star when writing equations.
Convolution is a formal mathematical operation, just as multiplication, addition, and
integration. Addition takes two numbers and produces a third number, while convolution
takes two signals and produces a third signal. Convolution is used in the mathematics of
many fields, such as probability and statistics. In linear systems, convolution is used to
describe the relationship between three signals of interest: the input signal, the impulse
response, and the output signal.

Matlab Code

clf;
h = [3 2 1 -2 1 0 -4 0 3]; % impulse response
x = [1 -2 3 -4 3 2 1]; % input sequence
y = conv(h,x);
n = 0:14;
subplot(2,1,1);
stem(n,y);
xlabel('Time index n'); ylabel('Amplitude');
title('Output Obtained by Convolution'); grid;
x1 = [x zeros(1,8)];
y1 = filter(h,1,x1);
subplot(2,1,2);

 14

stem(n,y1);
xlabel('Time index n');
ylabel('Amplitude');
title('Output Generated by Filtering'); grid;

Exercise

 Write a program in Matlab to explain the Convolution Process
 Write a program in Matlab to explain the Impulse Response of LTI Systems
 Write a program in Matlab to explain Linear and Non Linear Signals

 15

EXPERIMENT # 4

Objective

Computation of Z Transforms and Inverse Z Transforms using Matlab Commands

Description

As analog filters are designed using the Laplace transform, recursive digital filters are
developed with a parallel technique called the z-transform. The overall strategy of these
two transforms is the same: probe the impulse response with sinusoids and exponentials
to find the system's poles and zeros. The Laplace transforms deals with differential
equations, the s-domain, and the s-plane. Correspondingly, the z-transform deals with
difference equations, the z-domain, and the z-plane. However, the two techniques are not
a mirror image of each other; the s-plane is arranged in a rectangular coordinate system,
while the z-plane uses a polar format. Recursive digital filters are often designed by
starting with one of the classic analog filters, such as the Butterworth, Chebyshev, or
elliptic. A series of mathematical conversions are then used to obtain the desired digital
filter. The Z transform of a discrete time system X[n] is defined as Power Series

Mathematically

 ∑
+∞=

−∞=

−=
n

n

nnxzx][)(

And the Inverse Z Transform is denoted by:

 X(n) = Z-1 [X(Z)]

As Z Transform is the infinite Power Series; it exits only for the region for which the
series converges (Region of convergence). Inverse Z Transform is the method of
inverting the Z Transform of a signal to obtain the time domain representation.

Z Transform Of A Discrete Time Function

X(n) = [1/16n]u(n)

 16

Matlab Code

syms z n
a=ztrans(1/16^n)

a =

16*z/(16*z-1)

Inverse Z-Transform

X(n) = Z-1 [X(Z)]

X(Z) = 3*Z / (Z+1)

Matlab Code

syms Z n
iztrans(3*Z/(Z+1))

ans =

3*(-1)^n

Pole Zero Diagram For A Function In Z Domain

 Z plane command computes and display the pole-zero diagram of Z function.
The Command is

Zplane(b,a)

To display the pole value, use root(a)
To display the zero value, use root(b)

X(Z) = [Z-2 + Z-1] / [1-2Z-1+3Z-2]

Matlab Code

b=[0 1 1]
a= [1 -2 +3]
roots(a)
roots(b)

 17

zplane(b,a);

ans =

 1.0000 + 1.4142i
 1.0000 - 1.4142i

ans =

 -1

Frequency Response

The Freqz function computes and display the frequency response of given Z- Transform
of the function

freqz(b,a,npt,Fs)

b= Coeff. Of Numerator
a= Coeff. Of Denominator

 18

Fs= Sampling Frequency
Npt= no. of free points between and Fs/2

X(Z) = [2+ 5Z-1+9Z-2+5Z-3+3Z-4]/ [5+ 45Z-1+2Z-2+Z-3+Z-4]

Matlab Code

b=[2 5 9 5 3]
a= [5 45 2 1 1]

freqz(b,a);

Experiment

 Write a program in Matlab to find the Z transform
 Write a program in Matlab to find the Inverse Z transform
 Write a program in Matlab to find Frequency Response

 19

EXPERIMENT # 5

Objective:

Computation of Discrete Time Fourier Transform using Matlab commands

Description

Fourier analysis is a family of mathematical techniques, all based on decomposing
signals into sinusoids. The discrete Fourier transform (DFT) is the family member used
with digitized signals. A signal can be either continuous or discrete, and it can be either
periodic or Aperiodic. The combination of these two features generates the four
categories, described below

 Aperiodic-Continuous

This includes, decaying exponentials and the Gaussian curve. These signals extend to
both positive and negative infinity without repeating in a periodic pattern. The Fourier
Transform for this type of signal is simply called the Fourier Transform.

 Periodic-Continuous

This includes: sine waves, square waves, and any waveform that repeats itself in a regular
pattern from negative to positive infinity. This version of the Fourier transform is called
the Fourier series.

 Aperiodic-Discrete

These signals are only defined at discrete points between positive and negative infinity,
and do not repeat themselves in a periodic fashion. This type of Fourier transform is
called the Discrete Time Fourier Transform.

 Periodic-Discrete

These are discrete signals that repeat themselves in a periodic fashion from negative to
positive infinity. This class of Fourier Transform is sometimes called the Discrete Fourier
Series, but is most often called the Discrete Fourier Transform.

 20

Discrete Fourier Transform Computation:

Mathematical Expression to calculate DFT for an input sequence x(n)

X(K) = ∑ x(n) e –j k Ω n T

Ω= 2π/NT

Matlab Code

clf;
a=[1 1 2 2];
x=fft(a,4);
n=0:3;
subplot(2,1,1);
stem(n,abs(x));
xlabel('time index n');
 ylabel('Amplitude');
title('amplitude obtained by dft');
grid;
subplot(2,1,2);
stem(n,angle(x));
xlabel('time index n'); ylabel('Amplitude');
title('Phase obtained by dft');

 21

DTFT Computation:

Matlab Code

% Evaluation of the DTFT
clf;
% Compute the frequency samples of the DTFT
w = -4*pi:8*pi/511:4*pi;
num = [2 1];den = [1 -0.6];
h = freqz(num, den, w);
% Plot the DTFT
subplot(2,1,1)
plot(w/pi,real(h));grid
title('Real part of H(e^{j\omega})')
xlabel('\omega /\pi');
ylabel('Amplitude');
subplot(2,1,2)
plot(w/pi,imag(h));grid

 22

title('Imaginary part of H(e^{j\omega})')
xlabel('\omega /\pi');
ylabel('Amplitude');
pause
subplot(2,1,1)
plot(w/pi,abs(h));grid
title('Magnitude Spectrum |H(e^{j\omega})|')
xlabel('\omega /\pi');
ylabel('Amplitude');
subplot(2,1,2)
plot(w/pi,angle(h));grid
title('Phase Spectrum arg[H(e^{j\omega})]')
xlabel('\omega /\pi');
ylabel('Phase in radians');

 23

Exercise

 Write a program in Matlab to find Discrete Fourier Transform
 Write a program in Matlab to find Inverse Discrete Fourier Transform
 Write a program in Matlab to find the Fast Fourier Transform.

 24

EXPERIMENT # 6

Objective:

Design of FIR filters using Matlab commands.

Description:

Digital filters refers to the hard ware and software implementation of the mathematical
algorithm which accepts a digital signal as input and produces another digital signal as
output whose wave shape, amplitude and phase response has been modified in a specified
manner.

Digital filter play very important role in DSP. Compare with analog filters they are
preferred in number of application due to following advantages.

 Truly linear phase response
 Better frequency response
 Filtered and unfiltered data remains saved for further use.

There are two type of digital filters.

 FIR (finite impulse response) filter
 IIR (infinite impulse response) filter

Description Of The Commands Used In FIR Filter Design

FIR1:

FIR filters design using the window method. B = FIR1(N,Wn) designs an N'th order low
pass FIR digital filter and returns the filter coefficients in length N+1 vector B. The cut-
off frequency Wn must be between 0 < Wn < 1.0, with 1.0 corresponding to half the
sample rate. The filter B is real and has linear phase. The normalized gain of the filter
at Wn is -6 dB.

B = FIR1(N,Wn,'high') designs an N'th order highpass filter. You can also use B =
FIR1(N,Wn,'low') to design a lowpass filter. If Wn is a two-element vector, Wn = [W1
W2], FIR1 returns an order N bandpass filter with passband W1 < W < W2.

B = FIR1(N,Wn,'stop') is a bandstop filter if Wn = [W1 W2]. You can also specify If Wn
is a multi-element vector, Wn = [W1 W2 W3 W4 W5 ... WN], FIR1 returns an order N
multiband filter with bands 0 < W < W1, W1 < W < W2, ..., WN < W < 1.

B = FIR1(N,Wn,'DC-1') makes the first band a passband.
B = FIR1(N,Wn,'DC-0') makes the first band a stopband.

 25

By default FIR1 uses a Hamming window. Other available windows, including Boxcar,
Hann, Bartlett, Blackman, Kaiser and Chebwin can be specified with an optional trailing
argument. For example, B = FIR1(N,Wn,kaiser(N+1,4)) uses a Kaiser window with
beta=4. B = FIR1(N,Wn,'high',chebwin(N+1,R)) uses a Chebyshev window.

For filters with a gain other than zero at Fs/2, e.g., highpass and bandstop filters, N must
be even. Otherwise, N will be incremented by one. In this case the window length
should be specified as N+2.

By default, the filter is scaled so the center of the first pass band has magnitude exactly
one after windowing. Use a trailing 'noscale' argument to prevent this scaling, e.g.

 B = FIR1(N,Wn,'noscale')

B = FIR1(N,Wn,'high','noscale')
 B = FIR1(N,Wn,wind,'noscale').

You can also specify the scaling explicitly, e.g. FIR1(N,Wn,'scale'), etc.

FREQZ Digital Filter Frequency Response.

[H,W] = FREQZ(B,A,N) returns the N-point complex frequency response vector H and
the N-point frequency vector W in radians/sample of the filter: given numerator and
denominator coefficients in vectors B and A. The frequency response is evaluated at N
points equally spaced around the upper half of the unit circle. If N isn't specified, it
defaults to 512.

[H,W] = FREQZ(B,A,N,'whole') uses N points around the whole unit circle.

H = FREQZ(B,A,W) returns the frequency response at frequencies designated in vector
W, in radians/sample (normally between 0 and pi).

[H,F] = FREQZ(B,A,N,Fs) and [H,F] = FREQZ(B,A,N,'whole',Fs) return frequency
vector F (in Hz), where Fs is the sampling frequency (in Hz).

H = FREQZ(B,A,F,Fs) returns the complex frequency response at the frequencies
designated in vector F (in Hz), where Fs is the sampling frequency (in Hz).

[H,W,S] = FREQZ(...) or [H,F,S] = FREQZ(...) returns plotting information to be used
with FREQZPLOT. S is a structure whose fields can be altered to obtain different
frequency response plots. For more information see the help for FREQZPLOT.

FREQZ(B,A,...) with no output arguments plots the magnitude and unwrapped phase of
the filter in the current figure window.

 26

Designing A Low Pass Filter:

Suppose out target is to pass all frequencies below 1200 Hz

fs=8000; % sampling frequency
n=50; % order of the filter
w=1200/ (fs/2);
b=fir1(n,w,'low'); % Zeros of the filter
freqz(b,1,128,8000); % Magnitude and Phase Plot of the filter
figure(2)
[h,w]=freqz(b,1,128,8000);
plot(w,abs(h)); % Normalized Magnitude Plot
grid
figure(3)
zplane(b,1);

Designing High Pass Filter:

Now our target is to pass all frequencies above 1200 Hz

fs=8000;
n=50;
w=1200/ (fs/2); b=fir1(n,w,'high');
freqz(b,1,128,8000);
figure(2)
[h,w]=freqz(b,1,128,8000);
plot(w,abs(h)); % Normalized Magnitude Plot
grid
figure(3)
zplane(b,1);

Designing High Pass Filter:

fs=8000;
n=50;
w=1200/ (fs/2);
b=fir1(n,w,'high');
freqz(b,1,128,8000);
figure(2)
[h,w]=freqz(b,1,128,8000);
plot(w,abs(h)); % Normalized Magnitude Plot
grid
figure(3)
zplane(b,1);

 27

Designing Band Pass Filter:

fs=8000;
n=40;
b=fir1(n,[1200/4000 1800/4000],’bandpass’);
freqz(b,1,128,8000)
figure(2)
[h,w]=freqz(b,1,128,8000);
plot(w,abs(h)); % Normalized Magnitude Plot
grid
figure(3)
zplane(b,1);

Designing Band Pass Filter:

fs=8000;
n=40;
b=fir1(n,[1200/4000 2800/4000],’stop’);
freqz(b,1,128,8000)
figure(2)
[h,w]=freqz(b,1,128,8000);
plot(w,abs(h)); % Normalized Magnitude Plot
grid
figure(3)
zplane(b,1);

Designing Notch Filter

fs=8000;
n=40;
b=fir1(n,[1500/4000 1550/4000],'stop');
freqz(b,1,128,8000)
figure(2)
[h,w]=freqz(b,1,128,8000);
plot(w,abs(h)); % Normalized Magnitude Plot
grid
figure(3)
zplane(b,1);

Designing Multi Band Filter

n=50;
w=[0.2 0.4 0.6];
b=fir1(n,w);

 28

freqz(b,1,128,8000)
figure(2)
[h,w]=freqz(b,1,128,8000);
plot(w,abs(h)); % Normalized Magnitude Plot
grid
figure(3)
zplane(b,1);

Problems:

Design a band pass filter and band stop filter with the help of LPF and HPF
The filter has following specifications.
Band pass = 1200 – 2800 Hz
Band stop =1200-2800 Hz

Design a Multi band filter using HPF and LPF

The filter has following specifications
Pass band=1200 Hz – 1800 Hz
Stop band = 1900 Hz – 2200 Hz
Pass band = 2300 Hz – 2700 Hz

 29

 30

EXPERIMENT # 7

Objective:

Designing of IIR filters by Matlab commands.

Description:

Matlab contains various routines for design and analyzing digital filter IIR. Most of these
are part of the signal processing tool box. A selection of these filters is listed below.

 Buttord (for calculating the order of filter)
 Butter (creates an IIR filter)
 Ellipord (for calculating the order of filter)
 Ellip (creates an IIR filter)
 Cheb1ord (for calculating the order of filter)
 Cheyb1 (creates an IIR filter)

Explanation Of The Commands For Filter Design:

Buttord:

Butterworth filter order selection.

[N, Wn] = BUTTORD(Wp, Ws, Rp, Rs) returns the order N of the lowest order digital
Butterworth filter that loses no more than Rp dB in the pass band and has at least Rs dB
of attenuation in the stop band.

Wp and Ws are the pass band and stop band edge frequencies, normalized from 0 to 1
(where 1 corresponds to pi radians/sample). For example

 Low pass: Wp = .1, Ws = .2
 High pass: Wp = .2, Ws = .1

Band pass: Wp = [.2 .7], Ws = [.1 .8]
Band stop: Wp = [.1 .8], Ws = [.2 .7]

BUTTORD also returns Wn, the Butterworth natural frequency (or, the "3 dB
frequency") to use with BUTTER to achieve the specifications.

[N, Wn] = BUTTORD(Wp, Ws, Rp, Rs, 's') does the computation for an analog filter, in
which case Wp and Ws are in radians/second. When Rp is chosen as 3 dB, the Wn in
BUTTER is equal to Wp in BUTTORD.

 31

Ellipord:

Elliptic filter order selection.

[N, Wn] = ELLIPORD(Wp, Ws, Rp, Rs) returns the order N of the lowest order digital
elliptic filter that loses no more than Rp dB in the pass band and has at least Rs dB of
attenuation in the stop band Wp and Ws are the pass band and stop band edge
frequencies, normalized from 0 to 1 (where 1 corresponds to pi radians/sample). For
example,

 Low pass: Wp = .1, Ws = .2
 High pass: Wp = .2, Ws = .1

Band pass: Wp = [.2 .7], Ws = [.1 .8]
Band stop: Wp = [.1 .8], Ws = [.2 .7]

ELLIPORD also returns Wn, the elliptic natural frequency to use with ELLIP to achieve
the specifications.

[N, Wn] = ELLIPORD(Wp, Ws, Rp, Rs, 's') does the computation for an analog filter, in
which case Wp and Ws are in radians/second. NOTE: If Rs is much greater than Rp, or
Wp and Ws are very close, the estimated order can be infinite due to limitations of
numerical precision.

Cheb1ord:

Chebyshev Type I filter order selection.

[N, Wn] = CHEB1ORD(Wp, Ws, Rp, Rs) returns the order N of the lowest order digital
Chebyshev Type I filter that loses no more than Rp dB in the pass band and has at least
Rs dB of attenuation in the stop band. Wp and Ws are the pass band and stop band edge
frequencies, normalized from 0 to 1 (where 1 corresponds to pi radians/sample). For
example,

 Low pass: Wp = .1, Ws = .2
 High pass: Wp = .2, Ws = .1

Band pass: Wp = [.2 .7], Ws = [.1 .8]
Band stop: Wp = [.1 .8], Ws = [.2 .7]

CHEB1ORD also returns Wn, the Chebyshev natural frequency to use with CHEBY1 to
achieve the specifications.

[N, Wn] = CHEB1ORD(Wp, Ws, Rp, Rs, 's') does the computation for an analog filter, in
which case Wp and Ws are in radians/second.

 32

Butter:

Butterworth digital and analog filter design.

[B,A] = BUTTER(N,Wn) designs an Nth order lowpass digital Butterworth filter and
returns the filter coefficients in length N+1 vectors B (numerator) and A (denominator).
The coefficients are listed in descending powers of z. The cutoff frequency Wn must be
0.0 < Wn < 1.0, with 1.0 corresponding to half the sample rate.

 If Wn is a two-element vector, Wn = [W1 W2], BUTTER returns an order 2N
bandpass filter with passband W1 < W < W2.

[B,A] = BUTTER(N,Wn,'high') designs a highpass filter.
[B,A] = BUTTER(N,Wn,'stop') is a bandstop filter if Wn = [W1 W2].

When used with three left-hand arguments, as in [Z,P,K] = BUTTER(...), the zeros and
poles are returned in length N column vectors Z and P, and the gain in scalar K. When
used with four left-hand arguments, as in [A,B,C,D] = BUTTER(...), state-space matrices
are returned.

BUTTER(N,Wn,'s'), BUTTER(N,Wn,'high','s') and BUTTER(N,Wn,'stop','s') design
analog Butterworth filters. In this case, Wn is in [rad/s] and it can be greater than 1.0.

Ellip:

Elliptic or Cauer digital and analog filter design.

[B,A] = ELLIP(N,Rp,Rs,Wn) designs an Nth order low pass digital elliptic filter with Rp
decibels of peak-to-peak ripple and a minimum stop band attenuation of Rs decibels.
ELLIP returns the filter coefficients in length N+1 vectors B (numerator) and A
(denominator).The cutoff frequency Wn must be 0.0 < Wn < 1.0, with 1.0 corresponding
to half the sample rate. Use Rp = 0.5 and Rs = 20 as starting points, if you are unsure
about choosing them.

If Wn is a two-element vector, Wn = [W1 W2], ELLIP returns an order 2N band pass
filter with pass band W1 < W < W2. [B,A] = ELLIP(N,Rp,Rs,Wn,'high') designs a high
pass filter. [B,A] = ELLIP(N,Rp,Rs,Wn,'stop') is a band stop filter if Wn = [W1 W2].

When used with three left-hand arguments, as in [Z,P,K] = ELLIP(...), the zeros and
poles are returned in length N column vectors Z and P, and the gain in scalar K. When
used with four left-hand arguments, as in [A,B,C,D] = ELLIP(...), state-space matrices
are returned.

ELLIP(N,Rp,Rs,Wn,'s'), ELLIP(N,Rp,Rs,Wn,'high','s') and ELLIP(N,Rp,Rs,Wn,'stop','s')
design analog elliptic filters. In this case, Wn is in [rad/s] and it can be greater than 1.0.

 33

Cheby1:

Chebyshev Type I digital and analog filter design.

[B,A] = CHEBY1(N,R,Wn) designs an Nth order lowpass digital Chebyshev filter with R
decibels of peak-to-peak ripple in the passband. CHEBY1 returns the filter coefficients in
length N+1 vectors B (numerator) and A (denominator). The cutoff frequency Wn must
be 0.0 < Wn < 1.0, with 1.0 corresponding to half the sample rate. Use R=0.5 as a
starting point, if you are unsure about choosing R.

If Wn is a two-element vector, Wn = [W1 W2], CHEBY1 returns an order 2N bandpass
filter with passband W1 < W < W2.

[B,A] = CHEBY1(N,R,Wn,'high') designs a highpass filter.
[B,A] = CHEBY1(N,R,Wn,'stop') is a bandstop filter if Wn = [W1 W2].

When used with three left-hand arguments, as in [Z,P,K] = CHEBY1(...), the zeros and
poles are returned in length N column vectors Z and P, and the gain in scalar K.

When used with four left-hand arguments, as in [A,B,C,D] = CHEBY1(...), state-space
matrices are returned.

CHEBY1(N,R,Wn,'s'), CHEBY1(N,R,Wn,'high','s') and CHEBY1(N,R,Wn,'stop','s')
design analog Chebyshev Type I filters.In this case, Wn is in [rad/s] and it can be greater
than 1.0.

Buttord and Butter Filter:

Designing IIR Low Pass Filter:

Suppose our target is to design a filter to pass all frequencies below 1200 Hz with pass
band ripples = 1 dB and minimum stop band attenuation of 50 dB at 1500 Hz. The
sampling frequency for the filter is 8000 Hz;

fs=8000;
[n,w]=buttord(1200/4000,1500/4000,1,50); % finding the order of the filter
[b,a]=butter(n,w); % finding zeros and poles for filter
figure(1)
freqz(b,a,512,8000);

figure(2)
[h,q] = freqz(b,a,512,8000);
plot(q,abs(h)); % Normalized Magnitude plot
grid

figure(3)

 34

f=1200:2:1500;
freqz(b,a,f,8000) % plotting the Transition band

figure(4)
zplane(b,a) % pole zero constellation diagram

Designing IIR High Pass Filter:

We will consider same filter but our target now is to pass all frequencies above 1200 Hz

[n,w]=buttord(1200/5000,1500/5000,1,50);
[b,a]=butter(n,w,'high');
figure(1)
freqz(b,a,512,10000);

figure(2)
[h,q] = freqz(b,a,512,8000);
plot(q,abs(h)); % Normalized Magnitude plot
grid

figure(3)
f=1200:2:1500;
freqz(b,a,f,10000)

figure(4)
zplane(b,a)

Designing IIR Band Pass Filter:

Now we wish to design a filter to pass all frequencies between 1200 Hz and 2800 Hz
with pass band ripples = 1 dB and minimum stop band attenuation of 50 dB. The
sampling frequency for the filter is 8000 Hz;

[n,w]=buttord([1200/4000,2800/4000],[400/4000, 3200/4000],1,50);
[b,a]=butter(n,w,'bandpass');
figure(1)
freqz(b,a,128,8000)

figure(2)
[h,w]=freqz(b,a,128,8000);
plot(w,abs(h))
grid

figure(3)
f=600:2:1200;

 35

freqz(b,a,f,8000); % Transition Band

figure(4)
f=2800:2:3200;
freqz(b,a,f,8000); % Transition Band

figure(5)
zplane(b,a)

Designing IIR Band Stop Filter:

[n,w]=buttord([1200/4000,2800/4000],[400/4000, 3200/4000],1,50);
[b,a]=butter(n,w,'stop');
figure(1)
freqz(b,a,128,8000)
[h,w]=freqz(b,a,128,8000);

figure(2)
plot(w,abs(h));
grid

figure(3)
f=600:2:1200;
freqz(b,a,f,8000); % Transition Band

figure(4)
f=2800:2:3200;
freqz(b,a,f,8000); % Transition Band

figure(5)
zplane(b,a);

Problems

Design all above filter using following commands

 Ellipord()
 Ellip()
 Cheb1ord()
 Cheby1()

Compare the results of the butter worth LPF with ellip LPF and cheby1 LPF on following
basis

 36

 Order
 Minimum stop band attenuation achieved
 Linearity in the phase plots with in the pass band and outside.
 Pole –zeros plot which filter appears to have pole most closely to the unit circle.

 37

EXPERIMENT # 8

Objective:

Filter designing by Matlab tools.

Description:

There are two tool boxes available for designing, analyzing and for viewing different
responses (Impulse & Step) of FIR and IIR filters.

 fvtool
 fdatool

Filter Visualization Tool:

FVTOOL is a Graphical User Interface (GUI) that allows you to analyze digital filters.
FVTOOL (B,A) launches the Filter Visualization Tool and computes the magnitude
Response for the filter defined in B and A. FVTOOL(B,A,B1,A1,...) will perform an
analysis on multiple filters. The real advantage of this visualization tool is that we can
view the magnitude response and phase response simultaneously, the impulse response,
step response the coefficients of the filter etc

Let us consider a Low Pass FIR filter of order 30 which passes all frequencies below
2000 Hz with sampling rate of 8000 Hz.

b=fir1(30,2000/4000,’low’);
fvtool(b,1)

 38

Filter Design & Analysis Tool.

FDATOOL launches the Filter Design & Analysis Tool (FDATool). FDATool is a
Graphical User Interface (GUI) that allows you to design or import, and analyze digital
FIR and IIR filters.
If the Filter Design Toolbox is installed, FDATool seamlessly integrates advanced filter
design methods and the ability to quantize filters.

Now we will design a LPF on fdatool, the specifications for the filter are shown in
respective columns of FDA tool

 39

Problems:

Design IIR butter worth filter with following specifications

 -50 dB or more for 0 to 1200 Hz (Stop Band Attenuation)
 -1 dB or less from 2000 Hz to 4000 Hz (Pass Band Characteristics)
 -50 dB or more above 6000 Hz (Stop Band Attenuation)
 Sampling frequency 16000 Hz

 40

EXPERIMENT # 9

Objective:

Design an IIR filter to suppress frequencies of 5 Hz and 30 Hz from given signal.

Description:

We know from Fourier analysis that signals can be described by a summation of
frequency components. Typically, a filter is used to enhance signals by attenuating
unwanted frequency components and retaining desired frequency components. In this
practical we begin by creating a signals ‘s’ with three sinusoidal components (at 5,15,30
Hz) and a time vector ‘t’ of 100 samples with a sampling rate of 100 Hz, and displaying it
in the time domain. The Matlab commands are shown below.

fs=100;
t=(1:100)/fs;
s=sin(2*pi*t*5)+sin(2*pi*t*15)+sin(2*pi*t*30);
plot(t,s)
grid

Now we design a filter to keep the 15 Hz sinusoid and eliminate the 5 and 30 Hz
sinusoids. We use the functions ellipord and ellip to create an infinite impulse response
(IIR) filter with a pass band from 10 to 20 Hz. The ellipord function requires the
specification of pass band corner frequencies, minimum transition band frequencies near
the pass band corner frequencies, the maximum pass band ripple in decibels (dB), and the

 41

minimum stop band attenuation in dB. In this example, we choose a transition frequency
to be ±5 Hz near the pass band corners, with a maximum of 0.1 dB ripple in the pass
band, and a minimum of 40 dB attenuation in the stop bands. We start by determining the
minimum order (pass band and stop band frequencies are normalized to the Nyquist
frequency):

wp1 = 10/50;
wp2 = 20/50;
ws1 = 5/50;
ws2 = 25/50;
wp = [Wp1 Wp2];
ws = [Ws1 Ws2];
rp = 0.1;
rs = 40;
[n,wn] = ellipord(wp,ws,rp,rs);

ellipord returns an order of 5, the minimum possible order for a low pass prototype that
will meet the constraints upon transformation to a band pass filter. When we apply this
order to the ellip function, internally we transform the low pass prototype to a band pass
filter using the function lp2bp. This doubles the order, making n = 10. Next we use n, the
order, and Wn, the pass band corner frequencies, to actually design the filter. We also use
freqz, a tool for computing and displaying the frequency response of the descriptive
transfer function. When called with no left-hand-side arguments (i.e., return values),
freqz displays the magnitude and phase response of the filter normalized to the Nyquist
frequency.

[b,a] = ellip(n,.1,40,w);
freqz(b,a,128,100)
[h,w]=freqz(b,a,128,100);
plot(w,abs(h));
grid
title(‘Normalized Magnitude Response’);
axis([0 50 0 1.2]);

 42

figure(4)
sf=filter(b,a,s); % Time domain Response of the Filter
plot(t,sf)
grid
xlabel('Time (seconds)');
ylabel('Signal Amplitude');
title('Filtered Signal only 15 Hz frequency');

Problem:

Design an IIR filter to remove 100 and 150 frequencies from above signal.

x=1+sin (2*pi*50*t) + sin (2*pi*100*t) + 0.5 sin (2*pi*125*t) + 0.25 sin (2*pi*150*t);

