Department of Electronic Engineering
NED University of Engineering & Technology

LABORATORY WORKBOOK

For the Course

DIGITAL LOGIC DESIGN

TC-203
Instructor Name:
Student Name:
Roll Number: Batch:
Semester: Year:

Department:

LABORATORY WORKBOOK
For the Course
DIGITAL LOGIC DESIGN

(TC-203)

Prepared By:
Dr. Rizwan Aslam (Assistant Professor)

Revised By:
Engr. Shafaq Mustafa (Lecturer)

Reviewed By:
Dr. Imran Aslam (Associate Professor)

Approved By:
The Board of Studies of Department of Electronic Engineering

CONTENTS

Lab . :
No Date Experiments CLO | Signature
1 To study basic logic gates and their functions
2 To design a half adder circuit
3 To design a full adder circuit
To analyze the operation of BCD to 7-segment
4 decoder
To explore programming with 8051
5 microcontrollers using Keil embedded C
environment.
To blink LEDs connected to port A with a delay
6 of 500 millisec using PIC 16F877A
To design an astable multi vibrator using 555
7 timer and to understand Flip Flop operation
To design a synchronous and asynchronous
8 counters using J K flip flops
To design combinational circuits using
9 multiplexer and demultiplexer
10 To analyze and study the operations of RS
and Clocked RS Flip-Flop and D Flip-Flop
To analyze and study the operations of JK
11 and Master-Slave JK Flip-Flop and T Flip-Flop
e Getting familiar with Verilog HDL for digital
19 design.
e To simulate and verify the verilog code on
ModelSim Software.
e Toanalyze 4 to 1 MUX working principle
e To explore ModelSim Software for
development of Verilog HDL
13 e Todesignand Test 4 to 1 MUX on Verilog

HDL by Gate Level Modeling, Data Flow
Modeling and Behavioral Modeling

14

To explore Quartus-11 Software for Development of
Verilog HDL codes.

To design and test Verilog HDL code of a
given function.

LAB SESSION 01

OBJECTIVE:

To study basic logic gates and their functions.

THEORY:

A logic gate is an elementary building block of a digital circuit. Most logic gates have two inputs and
one output. At any given moment, every terminal is in one of the two binary conditions low (0)
or high (1), represented by different voltage levels. The logic state of a terminal can, and generally
does, change often, as the circuit processes data. In most logic gates, the low state is approximately
zero volts (0 V), while the high state is approximately five volts positive (+5 V).

There are seven basic logic gates: AND, OR, XOR, NOT, NAND, NOR, and XNOR.

AND GATE:

The AND gate is so named because, if O is called "false” and 1 is called "true," the gate acts in the
same way as the logical "and" operator. The following illustration and table show the circuit symbol

and logic combinations for an AND gate. (In the symbol, the input terminals are at left and the output
terminal is at right.) The output is "true" when both inputs are "true." Otherwise, the output is "false."”

= -

AND gate
Input 1jInput 2| Output
0 0 0
0 1 0
1 0 0
1 1 1

OR GATE:

The OR gate gets its name from the fact that it behaves after the fashion of the logical inclusive "or."
The output is "true" if either or both of the inputs are "true." If both inputs are "false,” then the output
is "false.”

http://searchcio-midmarket.techtarget.com/definition/digital
http://searchcio-midmarket.techtarget.com/definition/circuit
http://searchcio-midmarket.techtarget.com/definition/binary

e

OR gate
Input LYinput 20utput
0 0 0
0 1 1
1 0 1
1 1 1

XOR GATE:

The XOR (exclusive-OR) gate acts in the same way as the logical "either/or." The output is "true" if
either, but not both, of the inputs are "true." The output is "false™ if both inputs are "false" or if both

inputs are "true." Another way of looking at this circuit is to observe that the output is 1 if the inputs
are different, but O if the inputs are the same.

= >

XOR gate
Input 1jinput 2/0Output
0 0 0
0 1 1
1 0 1
1 1 0

NOT GATE:

A logical inverter, sometimes called a NOT gate to differentiate it from other types of electronic
inverter devices, has only one input. It reverses the logic state.

—

Inverter or NOT gate

Input | Output

1 0

NAND GATE:

The NAND gate operates as an AND gate followed by a NOT gate. It acts in the manner of the logical
operation "and" followed by negation. The output is "false” if both inputs are "true." Otherwise, the

= -

output is "true."”

NAND gate
Input 1fInput 20utput
0 0 1
0 1 1
1 0 1
1 1 0

NOR GATE:

The NOR gate is a combination OR gate followed by an inverter. Its output is "true" if both inputs are
"false." Otherwise, the output is "false."”

S

NOR gate

Input LYinput 20utput
0 0 1
0 1 0
1 0 0
1 1 0

XNOR GATE:

The XNOR (exclusive-NOR) gate is a combination XOR gate followed by an inverter. Its output is
"true" if the inputs are the same and "false" if the inputs are different.

—)

XNOR gate
Input 1jinput 2/0Output
0 0 1
0 1 0
1 0 0
1 1 1

Using combinations of logic gates, complex operations can be performed. In theory, there is no limit
to the number of gates that can be arrayed together in a single device. But in practice, there is a limit
to the number of gates that can be packed into a given physical space. Arrays of logic gates are found
in digital integrated circuits (ICs). As IC technology advances, the required physical volume for each
individual logic gate decreases and digital devices of the same or smaller size become capable of
performing ever-more-complicated operations at ever-increasing speeds.

Common Gate ICs:

Part s
number Description
quad 2-input NAND
7400 gate

7402 guad 2-input NOR gate

7408 quad 2-input AND gate

triple 3-input NAND
7410 gate

7432 quad 2-input OR gate

7486 guad 2-input XOR gate

LABORATORY TASK:

1) Power up the 2-input AND , OR and NOT TTL ICs on a bread board.
2) Apply inputs using push-to-on/off switches and observe the output via LEDs.
3) Fill the Table provided in the result area.

RESULT:

A B AB A+B A’

= |— OO
= |O |~ |O

LAB SESSION 01

Total Marks

Marks Obtained

Remarks (If Any):

Instructor Name:

Instructor Signature:

Date:

10

LAB SESSION 02

OBJECTIVE:

Design a half adder circuit.
THEORY:

To understand what is a half adder you need to know what is an adder first. Adder circuit is a
combinational digital circuit that is used for adding two numbers. A typical adder circuit produces a
sum bit (denoted by S) and a carry bit (denoted by C) as the output. Typically adders are realized for
adding binary numbers but they can be also realized for adding other formats like BCD (binary coded
decimal, XS-3 etc. Besides addition, adder circuits can be used for a lot of other applications in digital
electronics like address decoding, table index calculation etc. Adder circuits are of two types: Half
adder ad Full adder.

Half adder is a combinational arithmetic circuit that adds two numbers and produces a sum bit (S) and
carry bit (C) as the output. If A and B are the input bits, then sum bit (S) is the X-OR of A and B and
the carry bit (C) will be the AND of A and B. From this it is clear that a half adder circuit can be
easily constructed using one X-OR gate and one AND gate. Half adder is the simplest of all adder
circuit, but it has a major disadvantage. The half adder can add only two input bits (A and B) and has
nothing to do with the carry if there is any in the input. So if the input to a half adder have a carry,
then it will be neglected it and adds only the A and B bits. That means the binary addition process is
not complete and that’s why it is called a half adder. The truth table, schematic representation and
XOR//AND realization of a half adder are shown in the figure below.

TRUTH TABLE:

Inputs Cutputs

A B = c XOR
A — —s A 5

0 0 0 0 1 bit B —

; o | 1 o half adder
B — —C AND

O 1 1 0 —C

Schematic
1 |0 1 Realization
Truth table

11

OBSERVATIONS:

Carry
A B Sum Out
0 0
0 1
1 0
1 1
RESULT:

The half adder circuit was implemented on a bread board using ICs

12

LAB SESSION 02

Total Marks

Marks Obtained

Remarks (If Any):

Instructor Name:

Instructor Signature:

Date:

13

LAB SESSION 03

OBJECTIVE:
Design a full adder circuit.
THEORY:

A full adder adds binary numbers and accounts for values carried in as well as out. A one-bit full
adder adds three one-bit numbers, often written as A, B, and C,;A and B are the operands, and C;, is a
bit carried in from the next less significant stage. The full-adder is usually a component in a cascade
of adders, which add 8, 16, 32, etc. binary numbers. The circuit produces a two-bit output, output
carry and sum typically represented by the signals C, and S.

TRUTH TABLE:

Input Input |Carry | Sum Carry
bit for | bit for bit bit bit
nurmber | number| input | output [output
A B | S| = | Cour
0 0 i 0 W]
0 0 1 1 W]
0 1 i 1 W]
0 1 1 0 1
1 0 i 1 W]
1 0 1 0 1
1 1 i 0 1
1 1 1 1 1
equals
A— FuLL [—S
+B ADDER
with with
C,, —— iHow do yau C

14

B—1e
Cin ‘Z/

OBSERVATIONS:

Cout

The required outputs observed as described in the truth table for sum and carry out are as follows.

Carry
A B In

Sum

Carry
Out

R |IP|IP|IP|IO|O |0 O
Rk |IO|IO|F |k |O O

R | Ok, |O|Fk,|O |k |O

RESULT:

The Full Adder circuit was implemented using 74LS83 discrete IC and the outputs of sum and carry

out were observed on LEDs.

15

LAB SESSION 03

Total Marks

Marks Obtained

Remarks (If Any):

Instructor Name:

Instructor Signature:

Date:

16

LAB SESSION 04

OBJECTIVE:

To analyze the operation of BCD to 7-segment decoder.

CIRCUIT DIAGRAM:

L] L
.' o Ll L
QB
Hq L
ac Ll L)
.' g’é mpg L
=15 L
ar 14 []
D N

D'l] _L‘

RVL| RVZ| RV

jEEL S R

1 o ™ ok ™| ok ™| ok 4+
STEAT:] <TEATH |<TEXTH |<TEXT=

THEORY:

Binary Coded Decimal (BCD or 8421 code) is a way to express each decimal digit (0-9) with a binary
code of four bits (0000-1001). With 4 bits, sixteen numbers (0000-1111) can be represented but in
BCD only ten of these are used. The six codes combinations that are not used are called “invalid
codes”.

A BCD to 7-segment display decoder such as 4511, has 4 BCD inputs and 7 output lines, one for each
LED segment. The 4511 is designed to drive a common cathode display and won't work with a
common anode display. In acommon cathode display, the cathodes of all the LEDs are joined
together and the individual segments are illuminated by HIGH voltages. If invalid codes, binary
values greater than 1001, are connected to the inputs of the 4511, the outputs are all 0's and the
display is blank.

17

OBSERVATIONS:

BCD Inputs Segment Outputs

a b c d e f g Display

il = === {=)lelle]lle])lw)
==l i =l [=l[=]=1l@]

r|lo|lo|r |k lojo|r|r|lojo|m
R R|O|rR|Oo|r|o|r|olk o>

RESULT:

The above circuit was implemented using 4511 BCD to 7-segment decoder and a common cathode
display.

18

LAB SESSION 04

Total Marks

Marks Obtained

Remarks (If Any):

Instructor Name:

Instructor Signature:

Date:

19

OBJECTIVE :

To explore programming with 8051 microcontrollers using Keil embedded C environment.

THEORY:

LAB SESSION 05

Microcontroller is a programmable digital logic device that has on-board micro-processor, RAM,
ROM and many other peripheral functions available on a single ship. Famous general propose
microcontroller families are 8051, PIC and AVR microcontrollers. These microcontrollers can be
programmed in Assembly, C and Basic languages via specific development environment. The most
famous environment for 8051 family program development is Keil uVision. It has provision of
programming both in C and Assembly language.

Task#l:

To write a code on Keil using 8051 microcontroller for blinking led’s and simulate it on proteus.

Program:

/*To blink Leds using Microcontroller*/

#include <REG51.h>

void delay (unsigned int sec)

{

Unsigned int i, 7j;
for (i=0;i<sec;i++)
for (3=0;3<1500; j++) ;

}

void main ()
{

int 1=0;
P2=0x00;
while (1)

{

P2=0xFF;
delay(100) ;
P2=0x00;
delay(100) ;
}

}

Simulation in Proteus:

Implement the following circuit in proteus and burn the above code in it.

20

C1
[11
19 sy RO 07AT0 222
p RO 1/A0 [l
il 1~ PO 2ia07 ool
= 2 CRTET 18 | yrarg Pl AT ol
i l TEATS PO 4104 (=55
n | * PO.5/A05 |20
PO /ACE | os
33 am ui
- gk RST R 74T |2
P2.0/48 ﬁ;
P2, 140 |2
o PL2/A0 (225
e FEEm PLAIAN (o2]
Ca 31—. &E P2 4ialz I_Z'B
L L EA FLBIALS (=20
B—q Pz a4 (210
P2 7iA05 |28
RIS im uid
—SE{P1D P.0/MD (10
=TT F1.1 P30 O
e P3 2T 12
AR py RN R
R1 Sop1d F3.4m (12
BIK Loipis Pa&T (12 - - -
TR S RE P3 SR |10
LA P37RD L
ATEOCE
ATERT:
Task#2:

Write an 8051 based code to design a counting system for a security gate. The count should be
displayed on a seven segment.

Program:

/*Design a security gate to increment the count of persons entering
uptil 9 via switch using 8051 microcontroller*/

#include <REG51.h>

void delay(unsigned int sec)
{

Unsigned int 1i,73;

for (i=0;i<sec;i++)

for (j=0;3<1500; j++) ;

}

void main ()

{

int 1=0;

P1=0x00; //Declaring input port
while (1)

{

21

if(P170!=0)
not

{i4++;

}

//Condition to check whether the switch is pressed or

if (1>9) //To reset the value of count to 0 if increment increases 9

{

i=0;

}

if (i==0)
{P2=0xCO;
delay (200) ;

}

else if(i==1)
{P2=0xF9;
delay (200) ;

}

else if(i==2)
{

P2=0xA4;
delay (200) ;

}

else 1if (i==3)
{

P2=0xB0;
delay (200) ;

}

else 1f (i==4)
{

P2=0x99;
delay (200);

}

else if (i==5)
{

P2=0x92;
delay (200) ;

}

else 1f (1i==6)
{

P2=0x82;
delay (200) ;

}

else if (i==7)
{

P2=0xF8;
delay (200) ;

}

else 1if (i==8)
{

P2=0x80;
delay (200) ;

}

else 1f (1==9)

{

22

P2=0x90;
delay (200) ;
}

}

}

Simulation in Proteus:

Implement the following circuit in proteus and burn the above code in it.

1
u T I
| | 18 LyTalt PO.0/AD0 (o2
*3p PO 1800 s
121 ke 1 & PO 2fA0G [oar
+ o CRYSTAL 18 1 srals PO 3/ATE |l
TEAT PO .4/ AD4 o
= I 6 PO 514D ok
' wan
e
a3 Im i
T <TFI|EHT> R&T PO.TREOTF 2=
P2 piee 221
P2.1/20
A2 14D
= CH = | FEN P2.30A11
E—q. A AE P2 4inz
o ER N
ﬁﬁ A2 Biidd
<TEATS
. ey A2 74005
im =10
L sl R3O/RAD il
ik P/mD L 4
F1 (R P3.2INTD oo
2.1k —=w] P12 P2.2ANT (oos
TS S P4 P3.4m (13
Loipis PRI (1o
F P1.G F3.|3."I.E .—1?
S8 7 A3 70
il BOCET
== TEAT:

RESULT:

LAB SESSION 05

Total Marks

Marks Obtained

Remarks (If Any):

Instructor Name:

Instructor Signature:

Date:

24

LAB SESSION 06

OBJECTIVE:

To blink LEDs connected to port A with a delay of 500 millisec using PIC 16F877A.

THEORY:

Microcontroller is a programmable digital logic device that has on-boad micro-processor, RAM,
ROM and many other peripheral functions available on a single ship. Famous general propose
microcontroller families are 8051 , PIC and AVR microcontrollers.

Program:

void main ()

{

TRISB = 0 ;
TRISC=0;
for(;;)

{

PORTB = Oxff ;
PORTC = Oxff ;
Delay ms (500) ;
PORTB = 0 ;
PORTC 0o ;
Delay ms (500) ;
}

}

Proteus Simulation:

Implement the following circuit in proteus and burn the above code in it.

25

CRYSTAL
CAFACITORE o

H

L1

LED-YELLMM
ATEHT

i FICIBFETTA

U i 3 Fozcimirm RELVINT
* | oecocLkouT REA
TET tEem
B 3 Ramann REXPCH
] ratani B+
?&APACITDR & FAANZREFC VRS RBS
AAANIAER ABSFOD
5 BT Kve 10T RETIROD

T RN R Z0UT
4 = RAGOTIOSNTIC H
2 | REWANSTE REHTIDEMCCEE
2| RENANGTT AC2ACEP 1
& AL [Py RS KECL
RESISTOR . R 42D PSR,
— TRFTFTunn T Hi RESED0
i ROETHCK
FIET RCTRIT
11 RODPERD
WO D RDA/PERY
12 RDZPEFZ
WOC ROZPEFI
RD4RERL
RADSPERS
= ANSPEPS
ROT/RER
PETRrer] | L L LT |

FTEAT

L4
LED-YELLON
STEST:

[Elc]

el [oldefulel<lls au|Tm

(]
LEB-RED
“TEAT:

LED-3REEN
STEAT

1]

LED-GRE

ATEHT

RESULT:

26

LAB SESSION 06

Total Marks

Marks Obtained

Remarks (If Any):

Instructor Name:

Instructor Signature:

Date:

27

LAB SESSION 07

OBJECTIVE:
To design an Astable multi vibrator using 555 timer and to understand Flip Flop operation.
THEORY:

555 IC is a monolithic timing circuit that can produce accurate and highly stable time delays or
oscillation. Like other commonly used op-amps, this IC is also very much reliable, easy to use
and cheaper in cost. It has a variety of applications including monostable and astable
multivibrators, dc-dc converters, digital logic probes, waveform generators, analog frequency
meters and tachometers, temperature measurement and control devices, voltage regulators etc.
The timer basically operates in one of the two modes either as a monostable (one-shot)
multivibrator or as an astable (free-running) multivibrator. The SE 555 is designed for the
operating temperature range from — 55°C to 125° while the NE 555 operates over a temperature
range of 0° to 70°C.

IC PIN CONFIGURATION:

555 TIMER IC
+Wee
GROUND | 1 E*Vcc
GROUND @ DISCHARGE
TRIGGER | 2 7 | M3CHARGE
TRIGGER THRESHOLD 555
OUTPUT] 3 & |THRESHOLD
OUTPUT @ CONTROL VOLTAGE
CONTROL
RESET| 4 5 VOLTAGE
RESET
Top View Of Metal Can Package B-Pin DIP

WORKING MODES:

The 555 has three main operating modes, Monostable, Astable, and Bistable. Each mode
represents a different type of circuit that has a particular output.

Astable mode :
An Astable Circuit has no stable state - hence the name "astable". The output continually switches
state between high and low without any intervention from the user, called a 'square’ wave. This
type of circuit could be used to give a mechanism intermittent motion by switching a motor on
and off at regular intervals. It can also be used to flash lamps and LEDs, and is useful as a ‘clock’
pulse for other digital ICs and circuits.

28

http://www.circuitstoday.com/555-timer-as-monostable-multivibrator
http://www.circuitstoday.com/555-timer-as-an-astable-multivibrator
http://www.circuitstoday.com/555-timer-as-an-astable-multivibrator
http://www.circuitstoday.com/6-to-15v-dc-to-dc-converter
http://www.circuitstoday.com/function-generators
http://www.circuitstoday.com/led-bargraph-thermometer
http://www.circuitstoday.com/category/voltage-regulators
http://www.555-timer-circuits.com/operating-modes.html

Ve

R1

2 ¢ &
R2 6 555 3 Output

Output (pin 3)

+

Cc
ov T

0.1nF

L

Monostable mode :

A Monostable Circuit produces one pulse of a set length in response to a trigger input such as a
push button. The output of the circuit stays in the low state until there is a trigger input, hence the
name "monostable" meaning "one stable state”. his type of circuit is ideal for use in a "push to
operate” system for a model displayed at exhibitions. A visitor can push a button to start a
model's mechanism moving, and the mechanism will automatically switch off after a set time.

29

http://www.555-timer-circuits.com/operating-modes.html

)
A Yrigger

e B e — Vi

0

o A

(b)

Bistable Mode (or Schmitt Trigger):

A Bistable Mode or what is sometimes called a Schmitt Trigger, has two stable states, high and
low. Taking the Trigger input low makes the output of the circuit go into the high state. Taking
the Reset input low makes the output of the circuit go into the low state. This type of circuit is

ideal for use in an automated model railway system where the train is required to run back and

forth over the same piece of track. A push button (or reed switch with a magnet on the underside

of the train) would be placed at each end of the track so that when one is hit by the train, it will
either trigger or reset the bistable. The output of the 555 would control a DPDT relay which
would be wired as a reversing switch to reverse the direction of current to the track, thereby
reversing the direction of the train.

30

http://www.555-timer-circuits.com/operating-modes.html
http://www.555-timer-circuits.com/schmitt-trigger.html

] &[] LI
o l+—+| Trigger Button Pressed

Output J

2 .n [« Reset Button Pressed

‘. ot + 6.inF

Output (pin 3)

FLIP FLOP OPERATION:

555 TIMER IC BLOCK DIAGRAM
+Vce THRESHOLD

® |1®

CONTROL

VOLTAGE S s OUTPUT o

STAGE
| L~ 5 OUTPUT
FLOP POWER
R AMPLIFIER
@ DISCHARGE
= TRIGGER =
INPUT
RESET

VREF www.Ci

The block diagram of a 555 timer is shown in the above figure. A 555 timer has two
comparators, which are basically 2 op-amps), an R-S flip-flop, two transistors and a resistive
network.

= Resistive network consists of three equal resistors and acts as a voltage divider.

= Comparator 1 compares threshold voltage with a reference voltage + 2/3 V¢ volts.

= Comparator 2 compares the trigger voltage with a reference voltage + 1/3 V¢ volts.

Output of both the comparators is supplied to the flip-flop. Flip-flop assumes its state according
to the output of the two comparators. One of the two transistors is a discharge transistor of which
collector is connected topin 7. This transistor saturates or cuts-off according to the output state of
the flip-flop. The saturated transistor provides a discharge path to a capacitor connected
externally. Base of another transistor is connected to a reset terminal. A pulse applied to this
terminal resets the whole timer irrespective of any input.

31

OBSERVATIONS:

Draw here the output wave form obtained from your designed circuit.

RESULT:

The circuits were implemented and the required waveforms were observed on an oscilloscope.

32

LAB SESSION 07

Total Marks

Marks Obtained

Remarks (If Any):

Instructor Name:

Instructor Signature:

Date:

33

LAB SESSION 08

OBJECTIVE:
To design a two bit asynchronous and synchronous binary counters using J K flip flops.
THEORY:

2 BIT ASYNCHRONOUS COUNTER:

Asynchronous counter is one in which flip flops within the counter do not change states at exactly
the same time because they do not have a common clock pulse.

HIGH —g
FFO FFI
% H% 4 4
ck {1 1 11 N c
Q0
o R = K,

2BIT SYNCHRONOUS COUNTER:

Synchronous counter is one in which all the flip flops are clocked at the same time by a common
clock pulse.

HIGH
o 123]
Uy
*—/ ----1»--<l, Q,
> C > C
K, K, = 6|

CLK

34

Qo (LSB)

Outputs
Q, (MSB)

OBSERVATIONS:

Clk

Q1

Qo

17

21

31

a

RESULT:

35

LAB SESSION 08

Total Marks

Marks Obtained

Remarks (If Any):

Instructor Name:

Instructor Signature:

Date:

36

LAB SESSION 09

OBJECTIVE:

To design a combinational circuit and implement it with multiplexers. To use a demultiplexer to
design a multiple output combinational circuit from the same input variables.

EQUIPMENTS:

* IC type 7404 HEX inverter

* IC type 7408 quad 2-input AND gate

* IC type 74151 8x1 multiplexer (1)

* IC type 74153 dual 4x1 multiplexer (2)

* IC type 7446 BCD-to-Seven-Segment decoder (1)
* Resistance network (1)

» Seven-Segment Display (1)

THEORY:

74151 is a 8 line-to-1 line multiplexer. It has the schematic representation shown in Fig 1.
Selection lines S2, S1 and SO select the particular input to be multiplexed and applied to the
output.

Strobe S acts as an enable signal. If strobe =1, the chip 74151 is disabled and

output y = 0. If strobe = 0 then the chip 74151 is enabled and functions as a
Multiplexer. Table 1 shows the multiplex function of 74151 in terms of select lines.

Table 1. 16! ‘ 8
Strobe | Select Lines | Output Stiobe ! |g vee OND
S S» S1 So Y 4 DU‘
1 X[XX 0 3 y |2 Y
0 | 0] 0] 0] DO 5 ﬁl
s peptod R e]
2 ’ W Y
0 0 I | D3 Input data < 15 | p,
0 | 1] 0] 0] D4 4 _ D
0 |1]o] 1] D5 13 | D
0 1 1 | 0 D6 12 | b,
o |1 [1[1] D7 \ R
9‘ 10‘ 11‘
_V—J

Fig.1 IC type 74151 Multiplexer 8x1

37

74153 is a dual 4 line-to-1 line multiplexer. It has the schematic representation shown
in Fig 2. Selection lines S1 and SO select the particular input to be multiplexed and

applied to the output I'Y{1 =1, 2}.
Each of the strobe signals IG {I = 1, 2} acts as an enable signal for the corresponding

multiplexer.

Table 2. shows the multiplex function of 74153 in terms of select lines. Note that each
of the on-chip multiplexers act independently from the other, while sharing the same
select lines S1 and SO.

Multiplexer 1
Strobe | Select lines | Output
1G Si So 1Y
1 X X 0
0 0 0 1Dy
0 0 1 1D,
0 1 0 1D>
0 1 1 1D3
16 E
V. GND
Strobe G
p
6 l1p, MUX1
5
—— 1Dy 1Y
Input data <
4
— Dy
3 |1Ds
. S, S
2

Fig.2 Pinout of 74153

Table 2
Multiplexer 2
Strobe | Select lines | Output
2G Si So 2Y
1 X X 0
0 0 0 2Dy
0 0 1 2Dy
0 1 0 2D,
0 1 | 2Ds
16 | s
V. GND
Strobe 15 Y =
— G
10 11p, wmUx2
L p, 2Y
Input data <
12
D,
13 | 1D,
S So

IC 7446 is a BCD to seven segment decoder driver. It is used to convert the
Combinational circuit outputs in BCD forms into 7 segment digits for the 7 segment
LED display units.

14‘

PROCEDURE:

Part I: Parity Generator:

a) Design a parity generator by using a 74151 multiplexer. Parity is an extra bit attached to a code
to check that the code has been received correctly. Odd parity bit means that the number of 1’s in
the code including the parity bit is an odd number. Fill the output column of the truth table in
Table 2 for a 5-bit code in which four of the bits (A,B,C,D) represents the information to be sent
and fifth bit (x), represents the parity bit. The required parity is an odd parity.

The inputs B,C and D correspond to the select inputs of 74151. Complete the truth table in Table
3 by filling in the last column with 0,1,A or A’.

b) Simulate the circuit using proteus , use 74-151 multiplexer and Binary switches for inputs and
Binary Probes for outputs. The 74151 has one output for Y and another inverted output W. Use A
and A’ for providing values for inputs 0-7. The internal values “A, B, C” are used for selection
inputs B,C, and D. Simulate the circuit and test each input combination filling in the table shown
below. In the Lab connect the circuit and verify the operations. Connect an LED to the
multiplexer output so that it represents the parity bit which lights any time when the four bits
input have even parity.

Inputs Outputs Connect data fo

A B C D X
0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 | 0 |

0 | 1 0

0 1 1 1

1 0 0 0

1 0 0 1

1 0 | 0

1 0 1 |

1 1 0 0

1 1 0 1

1 | 1 0

1 | 1 |

Part 2: Vote Counter:

A committee is composed of a chairman (C), a senior member (S), and a member (M).
The rules of the committee state that:

* The vote of the member (M) will be counted as 2 votes

* The vote of the senior member will be counted as 3 votes.

* The vote of the chairman will be counted as 5 votes.

Each of these persons has a switch to close (“1”’) when voting yes and to open (“0”)

39

when voting no.

It is necessary to design a circuit that displays the total number of votes for each issue.

Use a seven segment display and a decoder to display the required number.

If all members vote no for an issue the display should be blank. (Recall from Experiment #5, that
a binary input 15 into the 7446 blanks all seven segments).

If all members vote yes for an issue, the display should be 0. Otherwise the display shows a
decimal number equal to the number of 'yes' votes. Use two 74153 units, which include four
multiplexers to design the combinational circuit that converts the inputs from the members’
switch to the BCD digit for the 7446.

In Proteus use +5V for Logic 1 and ground for Logic 0 and use switches for C, S,and M. Use two
chips 74153 and one decoder 7446 verify your design and get a copy of your circuit with the pin
numbers to Lab so that you could connect the hardware in exactly the same way.

RESULT:

40

LAB SESSION 09

Total Marks

Marks Obtained

Remarks (If Any):

Instructor Name:

Instructor Signature:

Date:

41

LAB SESSION 10

OBJECTIVE !

To analyze and study the operations of the following circuits:
e RS and Clocked RS Flip-Flop
e D Flip-Flop

THEORY:

So far you have encountered with combinatorial logic, i.e. circuits for which the output depends
only on the inputs. In many instances it is desirable to have the next output depending on the
current output. A simple example is a counter, where the next number to be output is determined
by the current number stored. Circuits that remember their current output or state are often called
sequential logic circuits. Clearly, sequential logic requires the ability to store the current state. In
other words, memory is required by sequential logic circuits, which can be created with Boolean
gates. If you arrange the gates correctly, they will remember an input value. This simple concept
is the basis of RAM (random access memory) in computers, and also makes it possible to create a
wide variety of other useful circuits.

Memory relies on a concept called feedback. That is, the output of a gate is fed back into
the input. The simplest possible feedback circuit using two inverters is shown below (Fig.1):

Fig.1: Simplest realization of feedback circuit

If you follow the feedback path, you can see that if Q happens to be 1 (or 0), it will always be 1
(or 0). Since it's nice to be able to control the circuits we create, this one doesn't have much use --
but it does let you see how feedback works. It turns out that in "real" sequential circuits, you can
actually use this sort of simple inverter feedback approach. The memory elements in these
circuits are called flip-flops. A flip-flop circuit has two outputs, one for the normal value and one
for the complement value of the stored bit. Binary information can enter a flip-flop in a variety of
ways and gives rise to different types of flip-flops.

42

RS Flip-Flop

RS flip-flop is the simplest possible memory element. It can be constructed from two NAND
gates or two NOR gates. Let us understand the operation of the RS flip-flop using NOR gates as
shown below using the truth table for ‘A NOR B’ gate. The inputs R and S are referred to as the Reset
and Set inputs, respectively. The outputs Q and Q' are complements of each other and are referred to
as the normal and complement outputs, respectively. The binary state of the flip- flop is taken to be
the value of the normal output. When Q=1 and Q'=0, it is in the set state (or 1-state). When Q=0 and
Q'=1, itis in the reset/clear state (or O-state).

Circuit Diagram:

R [reset]

o [zet] ¢

A B A+B
00 1
01 0
10 0
11 0

S=1 and R=0: The output of the bottom NOR gate is equal to zero, Q'=0. Hence both inputs to the top
NOR gate are equal to 0, thus, Q=1. Hence, the input combination S=1 and R=0 leads to the flip-flop
being set to Q=1.

S=0 and R=1: Similar to the arguments above, the outputs become Q=0 and Q'=1. We say that the
flip-flop is reset.

S=0 and R=0: Assume the flip-flop was previously in set (S=1 and R=0) condition. Now changing S
to O results Q' still at 0 and Q=1. Similarly, when the flip-flop was previously in a reset state (S=0 and
R=1), the outputs do not change. Therefore, with inputs S=0 and R=0, the flip-flop holds its state.

S=1 and R=1: This condition violates the fact that both outputs are complements of each other since
each of them tries to go to 0, which is not a stable configuration. It is impossible to predict which
output will go to 1 and which will stay at 0. In normal operation this condition must be avoided by
making sure that 1's are not applied to both inputs simultaneously, thus making it one of the main
disadvantages of RS flip-flop.

All the above conditions are summarized in the characteristic table below:
43

Characteristic Table:

R S Q (0¥ Comment
0 0 Q Q Hold state
0 1 1 0 Set

1 0 0 1 Reset

1 1 ? ? Indeterminate

Debounce circuit

An elementary example using this flip-flop is the debounce circuit. Suppose a piece of
electronics is to change state under the action of a mechanical switch. When this switch is moved
from position S to R (S=0, R=1), the contacts make and break several times at R before settling to
good contact. It is desirable that the electronics should respond to the first contact and then remain
stable, rather than switching back and forth as the circuit makes and breaks. This is achieved by RS
flip-flop which is reset to Q=0 by the first signal R=1 and remains in a fixed state until the switch is
moved back to position S, when the signal S=1 sets the flip-flop to Q=1.

Gated or Clocked RS Flip-Flop

It is sometimes desirable in sequential logic circuits to have a bistable RS flip-flop that only
changes state when certain conditions are met regardless of the condition of either the Set or the Reset
inputs. By connecting a 2-input AND gate in series with each input terminal of the RS NOR Flip-flop
a Gated RS Flip-flop can be created. This extra conditional input is called an "Enable" input and is
given the prefix of "EN" as shown below. When the Enable input "EN" = 0, the outputs of the two
AND gates are also at logic level 0, (AND Gate principles) regardless of the condition of the two
inputs S and R, latching the two outputs Q and Q’ into their last known state. When the enable input
"EN" = 1, the circuit responds as a normal RS bistable flip-flop with the two AND gates becoming
transparent to the Set and Reset signals. This Enable input can also be connected to a clock timing
signal adding clock synchronisation to the flip-flop creating what is sometimes called a "Clocked SR
Flip-flop".

So a Gated/Clocked RS Flip- flop operates as a standard bistable latch but the outputs are
only activated when a logic "1" is applied to its EN input and deactivated by a logic "0". The property
of this flip-flop is summarized in its characteristic table where Qn
is the logic state of the previous output and Qn+1 is that of the next output and the clock input being
at logic 1 for all the R and S input combinations.

Circuit Diagram:

R —

EN/Clock
pulse

Q' 44

Characteristic Table:

On|R | S Oon+1

000 0(Hold)

0 |1 | 1| Indeterminate

1 /00| 1(Hold)

110 0
101 1
1 |1 |1 Indeterminate

D FLIP-FLOP

An RS flip-flop is rarely used in actual sequential logic because of its undefined outputs for inputs R=
S= 1. It can be modified to form a more useful circuit called D flip-flop, where D stands for data. The
D flip-flop has only a single data input D as shown in the circuit diagram. That data input is connected
to the S input of an RS flip-flop, while the inverse of D is connected to the R input. To allow the flip-
flop to be in a holding state, a D-flip flop has a second input called Enable, EN. The Enable-input is
AND-ed with the D-input.

When EN=0, irrespective of D-input, the R = S = 0 and the state is held.
When EN= 1, the S input of the RS flip-flop equals the D input and R is the inverse of D. Hence,
output Q follows D, when EN= 1. When EN returns to 0, the most recent input D is ‘remembered’'.

The circuit operation is summarized in the characteristic table for EN=1.

Circuit Diagram:

e

Characteristic
EN -

45

Table:

Qn D Qn+1
0 0 0
0 1 1
1 0 0
1 1 1

PROCEDURE:

1. Assemble the circuits one after another on your breadboard as per the circuit diagrams. Circuit
diagrams given here do not show connections to power supply and LEDs assuming that you are
already familiar with it from your previous lab experience.

2. Connect the ICs properly to power supply (pin 14) and ground (pin 7) following the schematics
for ICs given above.

3. Using dip switch and resistors, facilitate all possible combinations of inputs from the power
supply. Use the switch also to facilitate pulse input to the circuit.

4. Turn on power to your experimental circuit.

5. For each input combination, note the logic state of the normal and complementary outputs as
indicated by the LEDs (ON = 1; OFF = 0), and record the results in a table.

6. Compare your results with the characteristic tables.

7. When you are done, turn off the power to your experimental circuit.

OBSERVATIONS:

Table for RS Flip Flop:

Table for Gated RS Flip Flop:

Table for D Flip Flop:

RESULT:

46

LAB SESSION 10

Total Marks

Marks Obtained

Remarks (If Any):

Instructor Name:

Instructor Signature:

Date:

47

LAB SESSION 11

OBJECTIVE :

To analyze and study the operations of the following circuits:
e JK and Master-Slave JK Flip-Flop
e T Flip-Flop

THEORY:

So far you have encountered with combinatorial logic, i.e. circuits for which the output depends only
on the inputs. In many instances it is desirable to have the next output depending on the current
output. A simple example is a counter, where the next number to be output is determined by the
current number stored. Circuits that remember their current output or state are often called sequential
logic circuits. Clearly, sequential logic requires the ability to store the current state. In other words,
memory is required by sequential logic circuits, which can be created with boolean gates. If you
arrange the gates correctly, they will remember an input value. This simple concept is the basis of
RAM (random access memory) in computers, and also makes it possible to create a wide variety of
other useful circuits.

Memory relies on a concept called feedback. That is, the output of a gate is fed back into the
input. The simplest possible feedback circuit using two inverters is shown below (Fig.1):

Fig.1: Simplest realization of feedback circuit

If you follow the feedback path, you can see that if Q happens to be 1 (or 0), it will always be 1 (or 0)
. Since it's nice to be able to control the circuits we create, this one doesn't have much use -- but it
does let you see how feedback works. It turns out that in "real” sequential circuits, you can actually
use this sort of simple inverter feedback approach. The memory elements in these circuits are called
flip-flops. A flip-flop circuit has two outputs, one for the normal value and one for the complement
value of the stored bit. Binary information can enter a flip-flop in a variety of ways and gives rise to
different types of flip-flops.

JK FLIP-FLOP:

The JK flip flop (JK means Jack Kilby, a Texas instrument engineer, who invented it) is the most
versatile flip-flop, and the most commonly used flip flop. Like the RS flip-flop, it has two data
inputs, J and K, and an EN/clock pulse input (CP). Note that in the following circuit diagram NAND
gates are used instead of NOR gates. It has no undefined states, however. The fundamental
difference of this device is the feedback paths to the AND gates of the input, i.e. Q is AND-ed with
K and CP and Q with J and CP.

48

Qu [T | K Qua

. e ——— 0 o] o 0

J | 0 |01 0

O_ D |); 0Q 0 1] 0 1
= : 0 | 1] 1 | I(Toggle.@,)

Lk i 1 0] o0 1

. 1 0] 1 0

Ko p— } —T1eQ i [1]0 1
[| 1 | 1] 1 [0(Togele.0u)

The JK flip-flop has the following characteristics:

e If one input (J or K) is at logic 0, and the other is at logic 1, then the output is set or reset (by
J and K respectively), just like the RS flip-flop.

e If both inputs are 0, then it remains in the same state as it was before the clock pulse occurred;
again like the RS flip flop. CP has no effect on the output.

e If both inputs are high, however the flip-flop changes state whenever a clock pulse occurs;
i.e., the clock pulse toggles the flip-flop again and again until the CP goes back to 0 as shown
in the shaded rows of the characteristic table above. Since this condition is undesirable, it
should be eliminated by an improvised form of this flip-flop as discussed in the next section.

MASTER-SLAVE JK FLIP-FLOP:

Although JK flip-flop is an improvement on the clocked SR flip-flop it still suffers from
timing problems called "race" if the output Q changes state before the timing pulse of the clock input
has time to go "OFF", so the timing pulse period (T) must be kept as short as possible (high
frequency). As this is sometimes not possible with modern TTL IC's the much improved Master-Slave
J-K Flip-Flop was developed. This eliminates all the timing problems by using two SR flip-flops
connected together in series, one for the "Master" circuit, which triggers on the leading edge of the
clock pulse and the other, the "Slave™ circuit, which triggers on the falling edge of the clock pulse.

The master-slave JK flip flop consists of two flip flops arranged so that when the clock pulse
enables the first, or master, it disables the second, or slave. When the clock changes state again (i.e.,
on its falling edge) the output of the master latch is transferred to the slave latch. Again, toggling is
accomplished by the connection of the output with the input AND gates.

CIRCUIT DIAGRAM:

Master latch Slave Latch

/

oI
B

49

CHARACTERISTIC TABLE:

JKQuQn Q 0,
0 0 Hold Hold
1—0 0 0 Hold Hold
0
0

0—1 1 0 1 Hold
1—0 1 Hold 0 1
0—1 10 1 0 Hold
1—-0 1 0 Hold 1 0

TFELIP-FLOP:

The T flip-flop is a single input version of the JK flip-flop. The T flip-flop is obtained from the JK
type if both inputs are tied together.

CIRCUIT DIAGRAM:

Same as Master-Slave JK flip-flop with J=K=1 The toggle, or T, flip-flop is a bistable
device, where the output of the T flip-flop "toggles" with each clock pulse.Till CP=0, the
output is in hold state (three input AND gate principle).When CP=1, for T=0, previous
output is memorized by the circuit. When T=1 along with the clock pulse, the output
toggles from the previous value as given in the characteristic table below.

CHARACTERISTIC TABLE:

Qn T Qn+1
0 0 0
0 1 1
1 0 1
1 1 0

PROCEDURE:

1. Assemble the circuits one after another on your breadboard as per the circuit diagrams. Circuit
diagrams given here do not show connections to power supply and LEDs assuming that you are
already familiar with it from your previous lab experience.

2. Connect the ICs properly to power supply (pin 14) and ground (pin 7) following the schematics
for ICs given above.

3. Using dip switch and resistors, facilitate all possible combinations of inputs from the power
supply. Use the switch also to facilitate pulse input to the circuit.

50

4. Turn on power to your experimental circuit.

5 For each input combination, note the logic state of the normal and complementary outputs as
indicated by the LEDs (ON = 1; OFF = 0), and record the results in a table.

6. Compare your results with the characteristic tables.

7. When you are done, turn off the power to your experimental circuit.

OBSERVATIONS:

Table for JK FF;

Table for Master-Slave JK FF:

Table for T FF;

RESULT:

o1

LAB SESSION 11

Total Marks

Marks Obtained

Remarks (If Any):

Instructor Name:

Instructor Signature:

Date:

52

LAB SESSION 12

THEORY:

e Getting familiar with Verilog HDL for digital design.
e To simulate and verify the verilog code on ModelSim Software.

EQUIPMENT REQUIRED
e Modelsim software installed PCs

PROCEDURE
1. Open the ModelSim software.

2. Create a new project by File => New => Project from the Main window.

3. A “Create Project” window appears as shown in figure below. Select a suitable name for
your project; leave the Default Library Name to work.

ﬁ Project Name ‘
|

Project Location
|tera/ 90/modelsim_ase/examples Browse...

Default Library Name
Iwork

Copy Settings From
|/modelsim_ase/modelsim. ini Browse...
' Copy Library Mappings ¢~ Reference Library Mappings

0K Cancel |

4. After project name, an Add items to the Project dialog pops out as shown in figure below.
£l

— Llick an the icon to add items of that type:——

1]

Create Mew Filz Add Existing File
Create Simulation Create Mew Folder

Cloze |

5. From the “Add items to the Project” dialog click on Create a new file. If you have closed
the “Add items to the Project” dialog, then select Project => Add to Project => New File
from the main window.

53

6. A Create Project File dialog pops out. Select an appropriate file name for the file you want
to add (the name of file must be same as you write in Step 4); choose Verilog as the add file
as type option and Top level as the Folder option (see figure below) and then click on OK.

— File Name

| Browse... |
—Add file as type Folder
|Verilog ll rl'l‘op Level ﬂ
OK Cancel

[

7. On the workspace section of the Main Window, double-click on the file you have just
created (VLSL.v in our case).

™ ModelSim ALTERA ST R EDITIC

File Edit View Compile Simulate Add Project Tools Layout Window Help

]Dv@w@é; P BE D MT SN e @ J L EHA J conams [|| ox mom Layout [NeDesign |

|

[lvame [stawfrype Joroefy

. | o

-[{8 Project [[l Library | EE

Transcript Ha
Reading C:/altera/90/modelsim_ase/tcl/vsim/pref id -

Loading project sanal
reading Cr\altera\90\modelsim_ase\win32aloem/../modelsim. ini
Loading project visi

ModelSim=>

A Transcript |

M[Froject : visi [<No Design Loaded> [

A

n: 1 col: 0 |

8. Type verilog code of the given task in the new window. For example here we use a simple
AND gate code.

| M ModelSim ALTERA STAR]

REDITION 68" CUstomAtesa Verser N
File Edit View Compile Simulate Add Source Tools Layout Window Help
0-3@28 tRROL ME%H [w[| SBR%|won s[x0x0B K |
-
1 module VLSI (c,a,b);
2 input a,b;
3 output c;
4 and gl (c,a,b);
5 endmodule|
6
. ~ 4 &
o T o
Transcript — 0 — e
Reading C:/altera/90/modelsim_ase/tcl/vsim/pref.td j
Loading project sanal |
reading C: X /modelsim.ini
2 Loading project Visi
ModelSim> |
1 R Trnnscrlpll KL} I
[Project : visi [<No Design Loaded> in: sco:o [
==

9. Save your code.

54

10. In workspace window do right click on project name (i.e. VLSI) select Compile =>
Compile All. A message “ Compile of VLSI.v was successful” will appear in message
window.

| ModelSim ALTERA STARTER ED on
File Edit View Compile Simulate Add Project Tools Layout Window Help)
|O-@E2E]| S @O [ME % || v B U@ amns[. 2| xx 08 A| !
| toyout jNopesign vl |
Workspace ——— = A | 0] C:/altera/90/modelsim_ase/examples/VLSLy = HAX
rdeill s | N
|1 module vLsI (c,a,b);

Edit input a,b;

Execute output c;

Add to Project

Remove from Project | Compile Out-of-Date

Close Project Compile Order...

Update Complle Report...

=TT - e
= Compile Summary.

Project Settings... Compile Properties... =

T WY | R ol
{4 Project - DN mvisiy = LU

Transcript i Hl
Reading C:/altera/90/modelsim_sse/td/vm/pref.td A

Loading project sanal
reading C:\altera\90\modelsim_ase\win32aloem/../modelsim.ini
Loading project visi

IR Transcript L]

[Project : visi |<No Design Loaded> [

11. For simulating the design click on Simulation => Start Simulation in main window,
simulation environment will appears as shown in figure below.

12. Click on the (+) sign next to the work library. You should see the name of the entity of the
code that we have just compiled “VLSI” select your desired file.

= ~ :
7 ModelSim ALTERA STARTER EDITIO
% - x®
File Edit View Compile Simulate Add Project Toois Layout Window Help _
O-@HEeE § BB DD ﬁ“ Help a“émﬁ@“ Contains [/H SO pt Share
-
18X [[] c:/altera/o0/ W VLSLv Hax
:mamu = StatulType Orde] nz | |~ |
Y visiy ¥ Veribgo || 1 module VLSI (c,a,pla
2 input a,b; M Start Simulation u
3 output c;
4 and gl (c,a,b) Desi
ign | VHDL | Verilog | Libraries | SDF | Others
5 endmodule]]]]]] ol
6 [*[Name. [Type [Path [=
@ = work Library C:/altera/90/modelsim_ase/examples...
1] sana1 Module C:/altera/90/modelsim_ase/examples...
Ml vist Module C:/altera/90/modelsim_ase/examples...
=i} 220model Library $MODEL_TECH/../altera/vhdl/220model
=+ 220model_ver Library $MODEL_TECH]../altera/verilog/220m...
4 d K - {H) alt_ver Library $MODEL_TECHY../altera/verilog/alt_vtl
o i = ft_vtl Library $MODEL_TECH/../altera/vhdl/alt_vtl
8 Project [il b KL ol
1‘-’ roject | i Library [visty =) attera Library $MODEL_TECH/../altera/vhdl/altera =
| |l attars me Lihrane ___émaner_TECW/ mf M| o
Transcript I
Reading C:/altera/90/ im_ase/tcl/ pref.tcl Design Unit(s) Resolution |
Loading project VLSI [work.vrsT ‘ [aefaule w|
Compile of VLSLv was successful.
s
ModelSim>
™ Enable optimization Optimization Options...
R Transcript :
L__J B 0K Cancel
I|m]en : VLSI | <No Design Loaded> [[— —
_—————

13. Locate the signals window and select the signals that you want to monitor for simulation. For
this example of AND gate, select all signals as shown figure below.

55

™ ModelSim AI.TERAST \F _ __=)
File Edit View Compile Simulate Add Objects Tools Layout Wmdow Help - %
D-ZE2E| (BB AE%MH Help aJ@uﬁﬁﬂ“i*‘ B o HENBH DPE WS | Shace
Contains |/ o{ XOX 1 B &H Layout |simulate | =
2 x| Objects H8x (e i ples/VLSLy HAX
\V{Insumce |Desgn unit_|Design ul e | -
= VLSt VLSt Module ;| module VLSI (c,a,b):
“dag vLSI Process 2 input a,b;
3 output c;
4 and gl (c,a,b);
5 endmodule
6
2
4] Im— Lk ki 2
| 2 sim [& Fies | B8 memories [I copacty ¥ &] VISLy <l
Transcript Ha
IVS]M 2> il
Transcript oy
[Pro]ec(1 VLSI [Now: 0ps Delta: 0 :slm:lVLSI "

14. Drag the above signals by selecting all then right click and select Add => To Wave =>
Selected items to the wave window.

15. Now we are ready to simulate our design. For this purpose we will change the values of
inputs (i.e. a and b in above example of AND gate) by right click on input and select Force
and write either ‘0’ or ‘1’ in value box and repeat same step for changing the value of other
inputs.

16. Click Run button in main window tool bar and can see the changes in the both the wave
and objects windows.

R EDITION 6.4:]

M ModelSim ALTERA STA|

File Edit View Compile Simulate Add Objects Tools Layout Window Help
- SWo& i RmE D" BT%N |j nelp|[Y @m@@“ YT lfjimo ool I.Llllli ™o ng@
Contains | /-, J H Layout [Simulate | J ioh] - e
B EE [
Workspace —————wi————— Hd X] | wave - default +
'1Instance ‘Des\gn unit |Des|gn ul Messages
;FtVLSI VLSI Module
& gl VLSI Process
4 NLsic
JENI— ~ |
l &lsim | Z Files l [Memories J [Capacity 4L¥] VLSLy | | wave &
Transcript Hel
[vsm 20> =
“Transmpt <
|Pro]ect 1 VLSI ‘Nuw: 1ns Delta: 0 ‘sim:,’VLSI 4|

56

LAB SESSION 12

Total Marks

Marks Obtained

Remarks (If Any):

Instructor Name:

Instructor Signature:

Date:

S7

LAB SESSION 13

OBJECTIVE
e Toanalyze 4 to 1 MUX working principle
e Toexplore Quartus-Il Software for Development of Verilog HDL Codes.
e Todesignand Test 4 to 1 MUX on Verilog HDL by
» Gate Level Modeling
» Data Flow Modeling
» Behavioral Modeling

EQUIPMENT
e Quartus-1l Modelsim Installed PCs

THEORY

A multiplexer (MUX) is a digital switch which connects data from one of “n” inputs to a single
output. A number of “Select Inputs” determine which data input is connected to the output. The
Block Diagram of MUX with “n” data inputs and “s” select lines is shown in figure below:

p
-— Single data output

ndatainputy » rl‘]mtlg)z _9 > p
__________ »

s select line

MUX acts like a digitally controlled multi-position switch where the binary code applied to the
select inputs controls the input source that will be switched on to the output. At any given point of
time only one input gets selected and is connected to output, based on the select input signal.
Input can be single bit or multi bits in nature. Following figure shows n to 1 MUX, handling “B”
bits of each input and select them to “B” bits output.

58

B-bits Data Inputs
(Total n inputs)

B-bits Data Output
f’

i

S
s Select Lines

A 4 to 1 MUX is shown in figure below. There are four input lines, 10 to I3, and two selections
lines, SO and S1, are decoded to select a particular input to appear at output.

The truth table for the 4:1 MUX is given as:

0———»
| 4401 Single data
|2—| MuUX output
[
So St
Sl S0 Output
0 0 10
0 1 11
1 0 12
1 1 13

PROCEDURE

No MWD

Understand given Gate level modeling code.
Create new Quartus-11 project for writing the code.
Open new Verilog file and write given code in it.

Include Verilog file in your project and compile your project.
Open Modelsim and simulate your project and verify results.
Understand given Data flow modeling code.

Repeat steps 3 to 5.

59

8. Understand given Behavioral Modeling code.
9. Repeat steps 3 to 5.

GATE LEVEL MODELING
// Module 4-to-1 multiplexer using gate level modeling. module
mux4 to 1 (output out,
input 10, i1, 12, i3,
input sl, s0);
// Internal wire declarations
wire sln, sOn;
wire y0, v1, v2, y3;

// Gate instantiations

// Create sln and sOn signals

not (sln, sl);

not (sOn, s0);

// 3-input and gates instantiated
and (y0, 10, sln, sOn);

and (yl, il, sln, s0);

and (y2, 12, sl1, sOn);

and (y3, i3, sl, s0);

// 4-input or gate instantiated

or (out, yO0, vl1, y2, y3);
endmodule

DATA FLOW MODELING

// Module 4-to-1 multiplexer using data-flow modeling module

mux4 to 1 (output out,
input io, i1, i2, i3,
input sl, s0);

//Logic equation for out

~sl & ~s0 & 1i0) |
~s1l & sO0 & 1i1)
sl & ~sO0 & 1i2)

sl & sO & i3)

assign out = (
(
(
(
endmodule

BEHAVIORAL MODELING

// Module 4-to-1 multiplexer using behavioral modeling module
mux4 to 1 (output out,

input
input
always @ (sl or sO or i0 or

begin

case ({sl, s0})
2'b00: out = 10;
2'b01: out = 1i1;
2'b10: out = 12;
2'bll: out = 1i3;
default: out = 1'bx;
endcase

end

endmodule

RESULTS

io, i1, 1i2,
sl, s0);
il or 12 or 13)

i3,

61

LAB SESSION 13

Total Marks

Marks Obtained

Remarks (If Any):

Instructor Name:

Instructor Signature:

Date:

62

LAB SESSION 14

OBJECTIVE

e Toexplore Quartus-1l Software for Development of Verilog HDL codes.
e To design and test Verilog HDL code of a given function.

EQUIPMENT

e Quartus Il software installed PCs
e ALTERA DE2 Board

PROCEDURE
1. Open the Quartus Il software.

2. Create a new project by selecting “Create a New Project (New Project Wizard)” as
shown in Figure below.

X

Getting Started With Quartus® Il Software %

Start Designing Start Learning

Designing with Quartus ¥ software

requires a project o b g Y . - i
hicoerloassheintsdnnenian
e ——————

Open Exitting Project |

Open Recent Project
raheem
awaiz

Web links:
o) O /NBERYA,

~ [~ Don'tshow this screen again

3. Select a suitable name for your new directory (or you can use the existing one) and also the
name of the project and click on next option.

4. After creating new directory and project, create a new file by selecting File => New and
select Verilog HDL File type as shown in Figure below.

63

LU L0l

1

Mew Quartus Il Project
~S0PC Builder System
=) Design Files
AHDLFile
- Block Diagram/Schematic File
~EDIF File
- State Machine File
’ - SystemVerilog HOL File
]7 Tel Script File
_— erilog HDL File
- YHDL File
hd = Memory Files
——r - Hexadecimal {Intel-Format) File
~Memaory Initialization File
‘E [Verification/Debugging Files

esis In-System Sources and Probes File
Logic Analyzer Interface File
SignalTap Il Logic Analyzer File

aboeration Vector Waveform File

Je [= Other Files

= AHDL Include File

tant (Post-Mappinc Block Symbaol File

i Analveis T Chain Description File

b Synopsys Design Constraints File

Text File

5. A command window will appear. Write your program and save it with the same name as
given in module command. (Make sure that file should be saved in the same project
directory mentioned in step 2)

Now compile your program by selecting Processing => start compilation.

After completion of compilation a message will appear “full compilation was successful”.
To verify your verilog code on ALTERA board, assign suitable pins/switches/LEDs to your
input/output terminals by Assignments => Pin Planner. A pin planner window will
appear.

o~No

e s sy s e g s e e PSP — — —
¥ File Edit View Project Assignments Processing Tools Window Help

1EHG (S RE | |

15
iy T G|| File Edit View Processing Tools Window
% Cyclone Il EP2C35F672C6 Groups ———————————————————————i v X Tﬂp View - Wire Bond
it awsiz dg o Nermedt i =l Cyclone Il - EP2C35F672C6

Node Name I TR s s s TP T T
<<new node>> . 3 AT
A]
o VO08EADIDD,
8oy e me ﬁ
SVOAY A Aﬁgg
.iOX AT B ﬁ%XOT
== 1z é’;@@ =R
i Besrogesepinidoenstytaeed
- A AV OG0T, v, gﬁ@)g %@ .
yHierarchy | B Files | gF Design Units g . . IOV @) ful :
Start 1/0 Assignment ‘ABagA @g“”’-“%\/w”‘%@;ﬂ%? g
R ; N 5 3 .
NSy A Rototat-ptetatE T M
w.|Compilation AnalySIS . VoalaAA RS S .
v 2 ADEBAGDANDDARD L
kB E;Eﬁt g g;}(g DOVAED, ﬁ%\,{@v
? B Compile Design 3 A0 00 e@‘f
(B0 ADY ADYG
v W Analysis & Synihesis = (o \/é\éA Elegeyule) AQ@@@“@ pdote
T Edit Setings 2 4 23 yoposo0na.
B ViewReport e geeteef Al e seeReRi”
" » Analysis & Elaboration «[ug > fr=—=1 ==
> Partiion Merge - . =
3 Netlist Viewers T Named: [§ ~ |« Edit % | |p\N7Nza P assignments Fiter: [Pins: all =]
> Design Assistant (Post1 Node Name Direction W™ LocatioM\, | VOBank | VREF Group O Standard __ ~
» 10 Analvsi 1 | x Tnput o Ad])-15 |BS_NL [3.3-V LVITL (def..._ |
1 2 wy Tnput = 10BANK_3 Column /O LVDS51p -
3 D z Output PIN_AS 10BANK_3 Column /O LVDS52p —
Type |Messaqe 2 PIN_A6 I0BANK_3 Column YO LVDS53n EI?
) Info: Running Quartf= | ¢ | m | PIN_A7 I0BANK 3 Column /O LVDS38n
@ Info: Command: gquaz{lf FIN_AB 10BANK 3 Column /O LVDS62n
W Info: Longest tpd For Help, press F1 PIN_A9 I0BANK_3 Column /O LVDS65n
R Info: guartus Iz cl PIN_A10 I0BANK_3 Column /O LVDS67n
¥ Tne N N — P— PIN_A13 I0BANK 4 Dedicated Clock CLK, LVDSCLK4p, Input.
53] nfo: Quartus u. ‘ompilation was successful. STTOTS on aia 10BANK 4 Column 1O e L

<

I
System (2))\ Processing {48) /i Extralnfo } Info (45) § Waming (3))\ Critical \Waming) Eror) Suppressed (5) } Flag /

Vlessage: 0 af91 2| & |[Foseton

64

9. Assign switches and LEDs to all input and output terminals respectively and start 1/0
assignment analysis as shown in above figure. The location of ALTERA DE2 board can be
selected from “ALTERA DE2 user manual”.

10. After I/O assignment analysis, now code is ready to be dumped in ALTERA DE2 board.

Select Tools => Programmer and after selection of USB blaster option select Start. A
100% completion message will appear, when program is completely dump.

11. Now, you can test your program on ALTERA DE2 board.

RESULTS:

65

LAB SESSION 14

Total Marks

Marks Obtained

Remarks (If Any):

Instructor Name:

Instructor Signature:

Date:

66

