

Department of Electronic Engineering

NED University of Engineering & Technology

LABORATORY WORKBOOK

For the Course

DIGITAL LOGIC DESIGN

(TC-203)

Instructor Name:

Student Name:

Roll Number: Batch:

Semester: Year:

Department:

LABORATORY WORKBOOK

For the Course

DIGITAL LOGIC DESIGN

(TC-203)

Prepared By:

Dr. Rizwan Aslam (Assistant Professor)

Revised By:

Engr. Shafaq Mustafa (Lecturer)

Reviewed By:

Dr. Imran Aslam (Associate Professor)

Approved By:

The Board of Studies of Department of Electronic Engineering

3

CONTENTS

Lab

No.
Date Experiments CLO Signature

1 To study basic logic gates and their functions

2 To design a half adder circuit

3 To design a full adder circuit

4
 To analyze the operation of BCD to 7-segment

decoder

5

 To explore programming with 8051

microcontrollers using Keil embedded C

environment.

6
 To blink LEDs connected to port A with a delay

of 500 millisec using PIC 16F877A

7
 To design an astable multi vibrator using 555

timer and to understand Flip Flop operation

8
 To design a synchronous and asynchronous

counters using J K flip flops

9
 To design combinational circuits using

multiplexer and demultiplexer

10
 To analyze and study the operations of RS

and Clocked RS Flip-Flop and D Flip-Flop

11
 To analyze and study the operations of JK

and Master-Slave JK Flip-Flop and T Flip-Flop

12

  Getting familiar with Verilog HDL for digital

design.

 To simulate and verify the verilog code on

ModelSim Software.

13

  To analyze 4 to 1 MUX working principle

 To explore ModelSim Software for

development of Verilog HDL

 To design and Test 4 to 1 MUX on Verilog

HDL by Gate Level Modeling, Data Flow

Modeling and Behavioral Modeling

4

14

  To explore Quartus-II Software for Development of

Verilog HDL codes.

 To design and test Verilog HDL code of a

given function.

5

LAB SESSION 01

OBJECTIVE:

To study basic logic gates and their functions.

THEORY:

A logic gate is an elementary building block of a digital circuit. Most logic gates have two inputs and

one output. At any given moment, every terminal is in one of the two binary conditions low (0)

or high (1), represented by different voltage levels. The logic state of a terminal can, and generally

does, change often, as the circuit processes data. In most logic gates, the low state is approximately

zero volts (0 V), while the high state is approximately five volts positive (+5 V).

There are seven basic logic gates: AND, OR, XOR, NOT, NAND, NOR, and XNOR.

AND GATE:

The AND gate is so named because, if 0 is called "false" and 1 is called "true," the gate acts in the

same way as the logical "and" operator. The following illustration and table show the circuit symbol

and logic combinations for an AND gate. (In the symbol, the input terminals are at left and the output

terminal is at right.) The output is "true" when both inputs are "true." Otherwise, the output is "false."

AND gate

Input 1 Input 2 Output

 0 0 0

 0 1 0

1 0 0

1 1 1

OR GATE:

The OR gate gets its name from the fact that it behaves after the fashion of the logical inclusive "or."

The output is "true" if either or both of the inputs are "true." If both inputs are "false," then the output

is "false."

http://searchcio-midmarket.techtarget.com/definition/digital
http://searchcio-midmarket.techtarget.com/definition/circuit
http://searchcio-midmarket.techtarget.com/definition/binary

6

OR gate

Input 1 Input 2 Output

0 0 0

0 1 1

1 0 1

1 1 1

XOR GATE:

The XOR (exclusive-OR) gate acts in the same way as the logical "either/or." The output is "true" if

either, but not both, of the inputs are "true." The output is "false" if both inputs are "false" or if both

inputs are "true." Another way of looking at this circuit is to observe that the output is 1 if the inputs

are different, but 0 if the inputs are the same.

XOR gate

Input 1 Input 2 Output

0 0 0

 0 1 1

1 0 1

1 1 0

NOT GATE:

A logical inverter, sometimes called a NOT gate to differentiate it from other types of electronic

inverter devices, has only one input. It reverses the logic state.

7

Inverter or NOT gate

Input Output

1 0

0 1

NAND GATE:

The NAND gate operates as an AND gate followed by a NOT gate. It acts in the manner of the logical

operation "and" followed by negation. The output is "false" if both inputs are "true." Otherwise, the

output is "true."

NAND gate

Input 1 Input 2 Output

 0 0 1

 0 1 1

1 0 1

1 1 0

NOR GATE:

The NOR gate is a combination OR gate followed by an inverter. Its output is "true" if both inputs are

"false." Otherwise, the output is "false."

8

NOR gate

Input 1 Input 2 Output

0 0 1

 0 1 0

1 0 0

1 1 0

XNOR GATE:

The XNOR (exclusive-NOR) gate is a combination XOR gate followed by an inverter. Its output is

"true" if the inputs are the same and "false" if the inputs are different.

XNOR gate

Input 1 Input 2 Output

 0 0 1

 0 1 0

1 0 0

1 1 1

Using combinations of logic gates, complex operations can be performed. In theory, there is no limit

to the number of gates that can be arrayed together in a single device. But in practice, there is a limit

to the number of gates that can be packed into a given physical space. Arrays of logic gates are found

in digital integrated circuits (ICs). As IC technology advances, the required physical volume for each

individual logic gate decreases and digital devices of the same or smaller size become capable of

performing ever-more-complicated operations at ever-increasing speeds.

9

Common Gate ICs:

Part

number
Description

7400

quad 2-input NAND

gate

7402 quad 2-input NOR gate

7408 quad 2-input AND gate

7410

triple 3-input NAND

gate

7432 quad 2-input OR gate

7486 quad 2-input XOR gate

LABORATORY TASK:

1) Power up the 2-input AND , OR and NOT TTL ICs on a bread board.

2) Apply inputs using push-to-on/off switches and observe the output via LEDs.

3) Fill the Table provided in the result area.

RESULT:

A B A.B A+B A'

0 0

0 1

1 0

1 1

10

LAB SESSION 01

Total Marks

Marks Obtained

Remarks (If Any):

Instructor Name:

Instructor Signature: Date:

11

LAB SESSION 02

OBJECTIVE:

Design a half adder circuit.

THEORY:

To understand what is a half adder you need to know what is an adder first. Adder circuit is a

combinational digital circuit that is used for adding two numbers. A typical adder circuit produces a

sum bit (denoted by S) and a carry bit (denoted by C) as the output. Typically adders are realized for

adding binary numbers but they can be also realized for adding other formats like BCD (binary coded

decimal, XS-3 etc. Besides addition, adder circuits can be used for a lot of other applications in digital

electronics like address decoding, table index calculation etc. Adder circuits are of two types: Half

adder ad Full adder.

Half adder is a combinational arithmetic circuit that adds two numbers and produces a sum bit (S) and

carry bit (C) as the output. If A and B are the input bits, then sum bit (S) is the X-OR of A and B and

the carry bit (C) will be the AND of A and B. From this it is clear that a half adder circuit can be

easily constructed using one X-OR gate and one AND gate. Half adder is the simplest of all adder

circuit, but it has a major disadvantage. The half adder can add only two input bits (A and B) and has

nothing to do with the carry if there is any in the input. So if the input to a half adder have a carry,

then it will be neglected it and adds only the A and B bits. That means the binary addition process is

not complete and that’s why it is called a half adder. The truth table, schematic representation and

XOR//AND realization of a half adder are shown in the figure below.

TRUTH TABLE:

12

OBSERVATIONS:

A B Sum

Carry

Out

0 0

 0 1

 1 0

 1 1

RESULT:

The half adder circuit was implemented on a bread board using ICs

13

LAB SESSION 02

Total Marks

Marks Obtained

Remarks (If Any):

Instructor Name:

Instructor Signature: Date:

.

14

LAB SESSION 03

OBJECTIVE:

Design a full adder circuit.

THEORY:

A full adder adds binary numbers and accounts for values carried in as well as out. A one-bit full

adder adds three one-bit numbers, often written as A, B, and Cin;A and B are the operands, and Cin is a

bit carried in from the next less significant stage. The full-adder is usually a component in a cascade

of adders, which add 8, 16, 32, etc. binary numbers. The circuit produces a two-bit output, output

carry and sum typically represented by the signals Cout and S.

TRUTH TABLE:

15

OBSERVATIONS:

The required outputs observed as described in the truth table for sum and carry out are as follows.

A B

Carry

In Sum

Carry

Out

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

RESULT:

The Full Adder circuit was implemented using 74LS83 discrete IC and the outputs of sum and carry

out were observed on LEDs.

16

LAB SESSION 03

Total Marks

Marks Obtained

Remarks (If Any):

Instructor Name:

Instructor Signature: Date:

17

LAB SESSION 04

OBJECTIVE:

To analyze the operation of BCD to 7-segment decoder.

CIRCUIT DIAGRAM:

THEORY:

Binary Coded Decimal (BCD or 8421 code) is a way to express each decimal digit (0-9) with a binary

code of four bits (0000-1001). With 4 bits, sixteen numbers (0000-1111) can be represented but in

BCD only ten of these are used. The six codes combinations that are not used are called “invalid

codes”.

A BCD to 7-segment display decoder such as 4511, has 4 BCD inputs and 7 output lines, one for each

LED segment. The 4511 is designed to drive a common cathode display and won't work with a

common anode display. In a common cathode display, the cathodes of all the LEDs are joined

together and the individual segments are illuminated by HIGH voltages. If invalid codes, binary

values greater than 1001, are connected to the inputs of the 4511, the outputs are all 0's and the

display is blank.

18

OBSERVATIONS:

BCD Inputs Segment Outputs
Display

D C B A a b c d e f g

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

1 0 0 0

1 0 0 1

1 1 1 1

RESULT:

The above circuit was implemented using 4511 BCD to 7-segment decoder and a common cathode

display.

19

LAB SESSION 04

Total Marks

Marks Obtained

Remarks (If Any):

Instructor Name:

Instructor Signature: Date:

20

LAB SESSION 05

OBJECTIVE :

To explore programming with 8051 microcontrollers using Keil embedded C environment.

THEORY:

Microcontroller is a programmable digital logic device that has on-board micro-processor, RAM,

ROM and many other peripheral functions available on a single ship. Famous general propose

microcontroller families are 8051, PIC and AVR microcontrollers. These microcontrollers can be

programmed in Assembly, C and Basic languages via specific development environment. The most

famous environment for 8051 family program development is Keil uVision. It has provision of

programming both in C and Assembly language.

Task#1:

To write a code on Keil using 8051 microcontroller for blinking led’s and simulate it on proteus.

Program:

/*To blink Leds using Microcontroller*/

#include <REG51.h>

void delay(unsigned int sec)

{

Unsigned int i,j;

for (i=0;i<sec;i++)

for(j=0;j<1500;j++);

}

void main()

{

int i=0;

P2=0x00;

while(1)

{

P2=0xFF;

delay(100);

P2=0x00;

delay(100);

}

}

Simulation in Proteus:

Implement the following circuit in proteus and burn the above code in it.

21

Task#2:

Write an 8051 based code to design a counting system for a security gate. The count should be

displayed on a seven segment.

Program:

/*Design a security gate to increment the count of persons entering

uptil 9 via switch using 8051 microcontroller*/

#include <REG51.h>

void delay(unsigned int sec)

{

Unsigned int i,j;

for(i=0;i<sec;i++)

for(j=0;j<1500;j++);

}

void main()

{

int i=0;

P1=0x00; //Declaring input port

while(1)

{

22

if(P1^0!=0) //Condition to check whether the switch is pressed or

not

{i++;

}

if(i>9) //To reset the value of count to 0 if increment increases 9

{

i=0;

}

if(i==0)

{P2=0xC0;

delay(200);

}

else if(i==1)

{P2=0xF9;

delay(200);

}

else if(i==2)

{

P2=0xA4;

delay(200);

}

else if(i==3)

{

P2=0xB0;

delay(200);

}

else if(i==4)

{

P2=0x99;

delay(200);

}

else if(i==5)

{

P2=0x92;

delay(200);

}

else if(i==6)

{

P2=0x82;

delay(200);

}

else if(i==7)

{

P2=0xF8;

delay(200);

}

else if(i==8)

{

P2=0x80;

delay(200);

}

else if(i==9)

{

23

P2=0x90;

delay(200);

}

}

}

Simulation in Proteus:

Implement the following circuit in proteus and burn the above code in it.

RESULT:

24

LAB SESSION 05

Total Marks

Marks Obtained

Remarks (If Any):

Instructor Name:

Instructor Signature: Date:

25

LAB SESSION 06

OBJECTIVE:

To blink LEDs connected to port A with a delay of 500 millisec using PIC 16F877A.

THEORY:

Microcontroller is a programmable digital logic device that has on-boad micro-processor, RAM,

ROM and many other peripheral functions available on a single ship. Famous general propose

microcontroller families are 8051 , PIC and AVR microcontrollers.

Program:

void main()

 {

 TRISB = 0 ;

 TRISC=0;

for(;;)

 {

 PORTB = 0xff ;

 PORTC = 0xff ;

Delay_ms(500) ;

 PORTB = 0 ;

 PORTC = 0 ;

Delay_ms(500) ;

 }

 }

Proteus Simulation:

Implement the following circuit in proteus and burn the above code in it.

26

RESULT:

27

LAB SESSION 06

Total Marks

Marks Obtained

Remarks (If Any):

Instructor Name:

Instructor Signature: Date:

28

LAB SESSION 07

OBJECTIVE:

To design an Astable multi vibrator using 555 timer and to understand Flip Flop operation.

THEORY:

555 IC is a monolithic timing circuit that can produce accurate and highly stable time delays or

oscillation. Like other commonly used op-amps, this IC is also very much reliable, easy to use

and cheaper in cost. It has a variety of applications including monostable and astable

multivibrators, dc-dc converters, digital logic probes, waveform generators, analog frequency

meters and tachometers, temperature measurement and control devices, voltage regulators etc.

The timer basically operates in one of the two modes either as a monostable (one-shot)

multivibrator or as an astable (free-running) multivibrator. The SE 555 is designed for the

operating temperature range from – 55°C to 125° while the NE 555 operates over a temperature

range of 0° to 70°C.

IC PIN CONFIGURATION:

WORKING MODES:

The 555 has three main operating modes, Monostable, Astable, and Bistable. Each mode

represents a different type of circuit that has a particular output.

Astable mode :

An Astable Circuit has no stable state - hence the name "astable". The output continually switches

state between high and low without any intervention from the user, called a 'square' wave. This

type of circuit could be used to give a mechanism intermittent motion by switching a motor on

and off at regular intervals. It can also be used to flash lamps and LEDs, and is useful as a 'clock'

pulse for other digital ICs and circuits.

http://www.circuitstoday.com/555-timer-as-monostable-multivibrator
http://www.circuitstoday.com/555-timer-as-an-astable-multivibrator
http://www.circuitstoday.com/555-timer-as-an-astable-multivibrator
http://www.circuitstoday.com/6-to-15v-dc-to-dc-converter
http://www.circuitstoday.com/function-generators
http://www.circuitstoday.com/led-bargraph-thermometer
http://www.circuitstoday.com/category/voltage-regulators
http://www.555-timer-circuits.com/operating-modes.html

29

Monostable mode :

A Monostable Circuit produces one pulse of a set length in response to a trigger input such as a

push button. The output of the circuit stays in the low state until there is a trigger input, hence the

name "monostable" meaning "one stable state". his type of circuit is ideal for use in a "push to

operate" system for a model displayed at exhibitions. A visitor can push a button to start a

model's mechanism moving, and the mechanism will automatically switch off after a set time.

http://www.555-timer-circuits.com/operating-modes.html

30

Bistable Mode (or Schmitt Trigger):

A Bistable Mode or what is sometimes called a Schmitt Trigger, has two stable states, high and

low. Taking the Trigger input low makes the output of the circuit go into the high state. Taking

the Reset input low makes the output of the circuit go into the low state. This type of circuit is

ideal for use in an automated model railway system where the train is required to run back and

forth over the same piece of track. A push button (or reed switch with a magnet on the underside

of the train) would be placed at each end of the track so that when one is hit by the train, it will

either trigger or reset the bistable. The output of the 555 would control a DPDT relay which

would be wired as a reversing switch to reverse the direction of current to the track, thereby

reversing the direction of the train.

http://www.555-timer-circuits.com/operating-modes.html
http://www.555-timer-circuits.com/schmitt-trigger.html

31

FLIP FLOP OPERATION:

The block diagram of a 555 timer is shown in the above figure. A 555 timer has two

comparators, which are basically 2 op-amps), an R-S flip-flop, two transistors and a resistive

network.

 Resistive network consists of three equal resistors and acts as a voltage divider.

 Comparator 1 compares threshold voltage with a reference voltage + 2/3 VCC volts.

 Comparator 2 compares the trigger voltage with a reference voltage + 1/3 VCC volts.

Output of both the comparators is supplied to the flip-flop. Flip-flop assumes its state according

to the output of the two comparators. One of the two transistors is a discharge transistor of which

collector is connected topin 7. This transistor saturates or cuts-off according to the output state of

the flip-flop. The saturated transistor provides a discharge path to a capacitor connected

externally. Base of another transistor is connected to a reset terminal. A pulse applied to this

terminal resets the whole timer irrespective of any input.

32

OBSERVATIONS:

Draw here the output wave form obtained from your designed circuit.

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

RESULT:

The circuits were implemented and the required waveforms were observed on an oscilloscope.

33

LAB SESSION 07

Total Marks

Marks Obtained

Remarks (If Any):

Instructor Name:

Instructor Signature: Date:

34

LAB SESSION 08

OBJECTIVE:

To design a two bit asynchronous and synchronous binary counters using J K flip flops.

THEORY:

2 BIT ASYNCHRONOUS COUNTER:

Asynchronous counter is one in which flip flops within the counter do not change states at exactly

the same time because they do not have a common clock pulse.

2 BIT SYNCHRONOUS COUNTER:

Synchronous counter is one in which all the flip flops are clocked at the same time by a common

clock pulse.

35

OBSERVATIONS:

Clk Q1 Qo

1↑

2↑

3↑

4↑

RESULT:

36

LAB SESSION 08

Total Marks

Marks Obtained

Remarks (If Any):

Instructor Name:

Instructor Signature: Date:

37

LAB SESSION 09

OBJECTIVE:

To design a combinational circuit and implement it with multiplexers. To use a demultiplexer to

design a multiple output combinational circuit from the same input variables.

EQUIPMENTS:

• IC type 7404 HEX inverter

• IC type 7408 quad 2-input AND gate

• IC type 74151 8x1 multiplexer (1)

• IC type 74153 dual 4x1 multiplexer (2)

• IC type 7446 BCD-to-Seven-Segment decoder (1)

• Resistance network (1)

• Seven-Segment Display (1)

THEORY:

74151 is a 8 line-to-1 line multiplexer. It has the schematic representation shown in Fig 1.

Selection lines S2, S1 and S0 select the particular input to be multiplexed and applied to the

output.

Strobe S acts as an enable signal. If strobe =1, the chip 74151 is disabled and

output y = 0. If strobe = 0 then the chip 74151 is enabled and functions as a
Multiplexer. Table 1 shows the multiplex function of 74151 in terms of select lines.

Fig.1 IC type 74151 Multiplexer 8×1

38

74153 is a dual 4 line-to-1 line multiplexer. It has the schematic representation shown

in Fig 2. Selection lines S1 and S0 select the particular input to be multiplexed and

applied to the output IY{1 = 1, 2}.

Each of the strobe signals IG {I = 1, 2} acts as an enable signal for the corresponding

multiplexer.

Table 2. shows the multiplex function of 74153 in terms of select lines. Note that each

of the on-chip multiplexers act independently from the other, while sharing the same

select lines S1 and S0.

Fig.2 Pinout of 74153

IC 7446 is a BCD to seven segment decoder driver. It is used to convert the

Combinational circuit outputs in BCD forms into 7 segment digits for the 7 segment

LED display units.

39

PROCEDURE:

Part I: Parity Generator:

a) Design a parity generator by using a 74151 multiplexer. Parity is an extra bit attached to a code

to check that the code has been received correctly. Odd parity bit means that the number of 1’s in

the code including the parity bit is an odd number. Fill the output column of the truth table in

Table 2 for a 5-bit code in which four of the bits (A,B,C,D) represents the information to be sent

and fifth bit (x), represents the parity bit. The required parity is an odd parity.

The inputs B,C and D correspond to the select inputs of 74151. Complete the truth table in Table

3 by filling in the last column with 0,1,A or A’.

b) Simulate the circuit using proteus , use 74-151 multiplexer and Binary switches for inputs and

Binary Probes for outputs. The 74151 has one output for Y and another inverted output W. Use A

and A’ for providing values for inputs 0-7. The internal values “A, B, C” are used for selection

inputs B,C, and D. Simulate the circuit and test each input combination filling in the table shown

below. In the Lab connect the circuit and verify the operations. Connect an LED to the

multiplexer output so that it represents the parity bit which lights any time when the four bits

input have even parity.

Part 2: Vote Counter:

A committee is composed of a chairman (C), a senior member (S), and a member (M).

The rules of the committee state that:

• The vote of the member (M) will be counted as 2 votes

• The vote of the senior member will be counted as 3 votes.

• The vote of the chairman will be counted as 5 votes.

Each of these persons has a switch to close (“l”) when voting yes and to open (“0”)

40

when voting no.

It is necessary to design a circuit that displays the total number of votes for each issue.

Use a seven segment display and a decoder to display the required number.

If all members vote no for an issue the display should be blank. (Recall from Experiment #5, that

a binary input 15 into the 7446 blanks all seven segments).

If all members vote yes for an issue, the display should be 0. Otherwise the display shows a

decimal number equal to the number of 'yes' votes. Use two 74153 units, which include four

multiplexers to design the combinational circuit that converts the inputs from the members’

switch to the BCD digit for the 7446.

In Proteus use +5V for Logic 1 and ground for Logic 0 and use switches for C, S,and M. Use two

chips 74153 and one decoder 7446 verify your design and get a copy of your circuit with the pin

numbers to Lab so that you could connect the hardware in exactly the same way.

RESULT:

41

LAB SESSION 09

Total Marks

Marks Obtained

Remarks (If Any):

Instructor Name:

Instructor Signature: Date:

42

LAB SESSION 10

OBJECTIVE :

To analyze and study the operations of the following circuits:

 RS and Clocked RS Flip-Flop

 D Flip-Flop

THEORY:

So far you have encountered with combinatorial logic, i.e. circuits for which the output depends

only on the inputs. In many instances it is desirable to have the next output depending on the

current output. A simple example is a counter, where the next number to be output is determined

by the current number stored. Circuits that remember their current output or state are often called

sequential logic circuits. Clearly, sequential logic requires the ability to store the current state. In

other words, memory is required by sequential logic circuits, which can be created with Boolean

gates. If you arrange the gates correctly, they will remember an input value. This simple concept

is the basis of RAM (random access memory) in computers, and also makes it possible to create a

wide variety of other useful circuits.

Memory relies on a concept called feedback. That is, the output of a gate is fed back into

the input. The simplest possible feedback circuit using two inverters is shown below (Fig.1):

Fig.1: Simplest realization of feedback circuit

If you follow the feedback path, you can see that if Q happens to be 1 (or 0), it will always be 1

(or 0). Since it's nice to be able to control the circuits we create, this one doesn't have much use --

but it does let you see how feedback works. It turns out that in "real" sequential circuits, you can

actually use this sort of simple inverter feedback approach. The memory elements in these

circuits are called flip-flops. A flip-flop circuit has two outputs, one for the normal value and one

for the complement value of the stored bit. Binary information can enter a flip-flop in a variety of

ways and gives rise to different types of flip-flops.

43

RS Flip-Flop

RS flip-flop is the simplest possible memory element. It can be constructed from two NAND

gates or two NOR gates. Let us understand the operation of the RS flip-flop using NOR gates as

shown below using the truth table for ‘A NOR B’ gate. The inputs R and S are referred to as the Reset

and Set inputs, respectively. The outputs Q and Q' are complements of each other and are referred to

as the normal and complement outputs, respectively. The binary state of the flip- flop is taken to be

the value of the normal output. When Q=1 and Q'=0, it is in the set state (or 1-state). When Q=0 and

Q'=1, it is in the reset/clear state (or 0-state).

Circuit Diagram:

S=1 and R=0: The output of the bottom NOR gate is equal to zero, Q'=0. Hence both inputs to the top

NOR gate are equal to 0, thus, Q=1. Hence, the input combination S=1 and R=0 leads to the flip-flop

being set to Q=1.
S=0 and R=1: Similar to the arguments above, the outputs become Q=0 and Q'=1. We say that the

flip-flop is reset.

S=0 and R=0: Assume the flip-flop was previously in set (S=1 and R=0) condition. Now changing S

to 0 results Q' still at 0 and Q=1. Similarly, when the flip-flop was previously in a reset state (S=0 and

R=1), the outputs do not change. Therefore, with inputs S=0 and R=0, the flip-flop holds its state.
S=1 and R=1: This condition violates the fact that both outputs are complements of each other since

each of them tries to go to 0, which is not a stable configuration. It is impossible to predict which

output will go to 1 and which will stay at 0. In normal operation this condition must be avoided by

making sure that 1's are not applied to both inputs simultaneously, thus making it one of the main

disadvantages of RS flip-flop.

All the above conditions are summarized in the characteristic table below:

44

 Characteristic Table:

Debounce circuit

An elementary example using this flip-flop is the debounce circuit. Suppose a piece of

electronics is to change state under the action of a mechanical switch. When this switch is moved

from position S to R (S=0, R=1), the contacts make and break several times at R before settling to

good contact. It is desirable that the electronics should respond to the first contact and then remain

stable, rather than switching back and forth as the circuit makes and breaks. This is achieved by RS

flip-flop which is reset to Q=0 by the first signal R=1 and remains in a fixed state until the switch is

moved back to position S, when the signal S=1 sets the flip-flop to Q=1.

Gated or Clocked RS Flip-Flop

It is sometimes desirable in sequential logic circuits to have a bistable RS flip-flop that only

changes state when certain conditions are met regardless of the condition of either the Set or the Reset

inputs. By connecting a 2-input AND gate in series with each input terminal of the RS NOR Flip-flop

a Gated RS Flip-flop can be created. This extra conditional input is called an "Enable" input and is

given the prefix of "EN" as shown below. When the Enable input "EN" = 0, the outputs of the two

AND gates are also at logic level 0, (AND Gate principles) regardless of the condition of the two

inputs S and R, latching the two outputs Q and Q’ into their last known state. When the enable input

"EN" = 1, the circuit responds as a normal RS bistable flip-flop with the two AND gates becoming

transparent to the Set and Reset signals. This Enable input can also be connected to a clock timing

signal adding clock synchronisation to the flip-flop creating what is sometimes called a "Clocked SR

Flip-flop".

So a Gated/Clocked RS Flip- flop operates as a standard bistable latch but the outputs are

only activated when a logic "1" is applied to its EN input and deactivated by a logic "0". The property

of this flip-flop is summarized in its characteristic table where Qn
is the logic state of the previous output and Qn+1 is that of the next output and the clock input being

at logic 1 for all the R and S input combinations.

Circuit Diagram:

EN/Clock

pulse

R S Q Q’ Comment

0 0 Q Q’ Hold state

0 1 1 0 Set

1 0 0 1 Reset

1 1 ? ? Indeterminate

45

Characteristic Table:

 Qn R S Qn+1

 0 0 0 0 (Hold)

 0 1 0 0

 0 0 1 1

 0 1 1 Indeterminate

 1 0 0 1 (Hold)

 1 1 0 0

 1 0 1 1

 1 1 1 Indeterminate

D FLIP-FLOP

An RS flip-flop is rarely used in actual sequential logic because of its undefined outputs for inputs R=

S= 1. It can be modified to form a more useful circuit called D flip-flop, where D stands for data. The

D flip-flop has only a single data input D as shown in the circuit diagram. That data input is connected

to the S input of an RS flip-flop, while the inverse of D is connected to the R input. To allow the flip-

flop to be in a holding state, a D-flip flop has a second input called Enable, EN. The Enable-input is

AND-ed with the D-input.

When EN=0, irrespective of D-input, the R = S = 0 and the state is held.
When EN= 1, the S input of the RS flip-flop equals the D input and R is the inverse of D. Hence,

output Q follows D, when EN= 1. When EN returns to 0, the most recent input D is ‘remembered'.

The circuit operation is summarized in the characteristic table for EN=1.

Circuit Diagram:

Characteristic

46

Table:

PROCEDURE:

1. Assemble the circuits one after another on your breadboard as per the circuit diagrams. Circuit

diagrams given here do not show connections to power supply and LEDs assuming that you are

already familiar with it from your previous lab experience.

2. Connect the ICs properly to power supply (pin 14) and ground (pin 7) following the schematics

for ICs given above.

3. Using dip switch and resistors, facilitate all possible combinations of inputs from the power

supply. Use the switch also to facilitate pulse input to the circuit.

4. Turn on power to your experimental circuit.

5. For each input combination, note the logic state of the normal and complementary outputs as

indicated by the LEDs (ON = 1; OFF = 0), and record the results in a table.

6. Compare your results with the characteristic tables.
7. When you are done, turn off the power to your experimental circuit.

OBSERVATIONS:

Table for RS Flip Flop:

Table for Gated RS Flip Flop:

Table for D Flip Flop:

RESULT:

Qn D Qn+1

0 0 0

0 1 1

1 0 0

1 1 1

47

LAB SESSION 10

Total Marks

Marks Obtained

Remarks (If Any):

Instructor Name:

Instructor Signature: Date:

48

LAB SESSION 11

OBJECTIVE :

To analyze and study the operations of the following circuits:

 JK and Master-Slave JK Flip-Flop
 T Flip-Flop

THEORY:
So far you have encountered with combinatorial logic, i.e. circuits for which the output depends only

on the inputs. In many instances it is desirable to have the next output depending on the current

output. A simple example is a counter, where the next number to be output is determined by the

current number stored. Circuits that remember their current output or state are often called sequential

logic circuits. Clearly, sequential logic requires the ability to store the current state. In other words,

memory is required by sequential logic circuits, which can be created with boolean gates. If you

arrange the gates correctly, they will remember an input value. This simple concept is the basis of

RAM (random access memory) in computers, and also makes it possible to create a wide variety of

other useful circuits.

Memory relies on a concept called feedback. That is, the output of a gate is fed back into the

input. The simplest possible feedback circuit using two inverters is shown below (Fig.1):

Fig.1: Simplest realization of feedback circuit

If you follow the feedback path, you can see that if Q happens to be 1 (or 0), it will always be 1 (or 0)

. Since it's nice to be able to control the circuits we create, this one doesn't have much use -- but it

does let you see how feedback works. It turns out that in "real" sequential circuits, you can actually

use this sort of simple inverter feedback approach. The memory elements in these circuits are called

flip-flops. A flip-flop circuit has two outputs, one for the normal value and one for the complement

value of the stored bit. Binary information can enter a flip-flop in a variety of ways and gives rise to

different types of flip-flops.

JK FLIP-FLOP:

The JK flip flop (JK means Jack Kilby, a Texas instrument engineer, who invented it) is the most

versatile flip-flop, and the most commonly used flip flop. Like the RS flip-flop, it has two data

inputs, J and K, and an EN/clock pulse input (CP). Note that in the following circuit diagram NAND

gates are used instead of NOR gates. It has no undefined states, however. The fundamental

difference of this device is the feedback paths to the AND gates of the input, i.e. Q is AND-ed with

K and CP and Q
’
 with J and CP.

49

The JK flip-flop has the following characteristics:

 If one input (J or K) is at logic 0, and the other is at logic 1, then the output is set or reset (by

J and K respectively), just like the RS flip-flop.

 If both inputs are 0, then it remains in the same state as it was before the clock pulse occurred;

again like the RS flip flop. CP has no effect on the output.

 If both inputs are high, however the flip-flop changes state whenever a clock pulse occurs;

i.e., the clock pulse toggles the flip-flop again and again until the CP goes back to 0 as shown

in the shaded rows of the characteristic table above. Since this condition is undesirable, it

should be eliminated by an improvised form of this flip-flop as discussed in the next section.

MASTER-SLAVE JK FLIP-FLOP:

Although JK flip-flop is an improvement on the clocked SR flip-flop it still suffers from

timing problems called "race" if the output Q changes state before the timing pulse of the clock input

has time to go "OFF", so the timing pulse period (T) must be kept as short as possible (high

frequency). As this is sometimes not possible with modern TTL IC's the much improved Master-Slave

J-K Flip-Flop was developed. This eliminates all the timing problems by using two SR flip-flops

connected together in series, one for the "Master" circuit, which triggers on the leading edge of the

clock pulse and the other, the "Slave" circuit, which triggers on the falling edge of the clock pulse.

The master-slave JK flip flop consists of two flip flops arranged so that when the clock pulse

enables the first, or master, it disables the second, or slave. When the clock changes state again (i.e.,

on its falling edge) the output of the master latch is transferred to the slave latch. Again, toggling is

accomplished by the connection of the output with the input AND gates.

CIRCUIT DIAGRAM:

Master latch Slave Latch

50

CHARACTERISTIC TABLE:

T FLIP-FLOP:

The T flip-flop is a single input version of the JK flip-flop. The T flip-flop is obtained from the JK

type if both inputs are tied together.

CIRCUIT DIAGRAM:

Same as Master-Slave JK flip-flop with J=K=1 The toggle, or T, flip-flop is a bistable

device, where the output of the T flip-flop "toggles" with each clock pulse.Till CP=0, the

output is in hold state (three input AND gate principle).When CP=1, for T=0, previous

output is memorized by the circuit. When T=1 along with the clock pulse, the output

toggles from the previous value as given in the characteristic table below.

CHARACTERISTIC TABLE:

Qn T Qn+1

0 0 0

0 1 1

1 0 1

1 1 0

PROCEDURE:

1. Assemble the circuits one after another on your breadboard as per the circuit diagrams. Circuit

diagrams given here do not show connections to power supply and LEDs assuming that you are

already familiar with it from your previous lab experience.

2. Connect the ICs properly to power supply (pin 14) and ground (pin 7) following the schematics

for ICs given above.

3. Using dip switch and resistors, facilitate all possible combinations of inputs from the power

supply. Use the switch also to facilitate pulse input to the circuit.

51

4. Turn on power to your experimental circuit.

5. For each input combination, note the logic state of the normal and complementary outputs as

indicated by the LEDs (ON = 1; OFF = 0), and record the results in a table.

6. Compare your results with the characteristic tables.
7. When you are done, turn off the power to your experimental circuit.

OBSERVATIONS:

Table for JK FF:

Table for Master-Slave JK FF:

Table for T FF:

RESULT:

52

LAB SESSION 11

Total Marks

Marks Obtained

Remarks (If Any):

Instructor Name:

Instructor Signature: Date:

53

LAB SESSION 12

THEORY:

 Getting familiar with Verilog HDL for digital design.

 To simulate and verify the verilog code on ModelSim Software.

EQUIPMENT REQUIRED

 Modelsim software installed PCs

PROCEDURE

1. Open the ModelSim software.

2. Create a new project by File => New => Project from the Main window.

3. A “Create Project” window appears as shown in figure below. Select a suitable name for

your project; leave the Default Library Name to work.

4. After project name, an Add items to the Project dialog pops out as shown in figure below.

5. From the “Add items to the Project” dialog click on Create a new file. If you have closed

the “Add items to the Project” dialog, then select Project => Add to Project => New File

from the main window.

54

6. A Create Project File dialog pops out. Select an appropriate file name for the file you want

to add (the name of file must be same as you write in Step 4); choose Verilog as the add file

as type option and Top level as the Folder option (see figure below) and then click on OK.

7. On the workspace section of the Main Window, double-click on the file you have just

created (VLSI.v in our case).

8. Type verilog code of the given task in the new window. For example here we use a simple

AND gate code.

9. Save your code.

55

10. In workspace window do right click on project name (i.e. VLSI) select Compile =>

Compile All. A message “ Compile of VLSI.v was successful” will appear in message

window.

11. For simulating the design click on Simulation => Start Simulation in main window,

simulation environment will appears as shown in figure below.

12. Click on the (+) sign next to the work library. You should see the name of the entity of the

code that we have just compiled “VLSI” select your desired file.

13. Locate the signals window and select the signals that you want to monitor for simulation. For

this example of AND gate, select all signals as shown figure below.

56

14. Drag the above signals by selecting all then right click and select Add => To Wave =>

Selected items to the wave window.

15. Now we are ready to simulate our design. For this purpose we will change the values of

inputs (i.e. a and b in above example of AND gate) by right click on input and select Force

and write either ‘0’ or ‘1’ in value box and repeat same step for changing the value of other

inputs.

16. Click Run button in main window tool bar and can see the changes in the both the wave

and objects windows.

RESULTS:

57

LAB SESSION 12

Total Marks

Marks Obtained

Remarks (If Any):

Instructor Name:

Instructor Signature: Date:

58

LAB SESSION 13

OBJECTIVE

 To analyze 4 to 1 MUX working principle

 To explore Quartus-II Software for Development of Verilog HDL Codes.

 To design and Test 4 to 1 MUX on Verilog HDL by

 Gate Level Modeling

 Data Flow Modeling

 Behavioral Modeling

EQUIPMENT

 Quartus-II Modelsim Installed PCs

THEORY

A multiplexer (MUX) is a digital switch which connects data from one of “n” inputs to a single

output. A number of “Select Inputs” determine which data input is connected to the output. The

Block Diagram of MUX with “n” data inputs and “s” select lines is shown in figure below:

MUX acts like a digitally controlled multi-position switch where the binary code applied to the

select inputs controls the input source that will be switched on to the output. At any given point of

time only one input gets selected and is connected to output, based on the select input signal.

Input can be single bit or multi bits in nature. Following figure shows n to 1 MUX, handling “B”

bits of each input and select them to “B” bits output.

59

A 4 to 1 MUX is shown in figure below. There are four input lines, I0 to I3, and two selections

lines, S0 and S1, are decoded to select a particular input to appear at output.

The truth table for the 4:1 MUX is given as:

S1 S0 Output

0 0 I0

0 1 I1

1 0 I2

1 1 I3

PROCEDURE

1. Understand given Gate level modeling code.

2. Create new Quartus-II project for writing the code.

3. Open new Verilog file and write given code in it.

4. Include Verilog file in your project and compile your project.

5. Open Modelsim and simulate your project and verify results.

6. Understand given Data flow modeling code.

7. Repeat steps 3 to 5.

60

8. Understand given Behavioral Modeling code.

9. Repeat steps 3 to 5.

GATE LEVEL MODELING

// Module 4-to-1 multiplexer using gate level modeling. module

mux4_to_1 (output out,

input i0, i1, i2, i3,

input s1, s0);

// Internal wire declarations

wire s1n, s0n;

wire y0, y1, y2, y3;

// Gate instantiations

// Create s1n and s0n signals

not (s1n, s1);

not (s0n, s0);

// 3-input and gates instantiated

and (y0, i0, s1n, s0n);

and (y1, i1, s1n, s0);

and (y2, i2, s1, s0n);

and (y3, i3, s1, s0);

// 4-input or gate instantiated

or (out, y0, y1, y2, y3);

endmodule

DATA FLOW MODELING

// Module 4-to-1 multiplexer using data-flow modeling module

mux4_to_1 (output out,

input i0, i1, i2, i3,

input s1, s0);

//Logic equation for out

assign out = (~s1 & ~s0 & i0)|

(~s1 & s0 & i1) |

(s1 & ~s0 & i2) |

(s1 & s0 & i3) ;

endmodule

BEHAVIORAL MODELING

// Module 4-to-1 multiplexer using behavioral modeling module

mux4_to_1 (output out,

61

input i0, i1, i2, i3,

input s1, s0);

always @(s1 or s0 or i0 or i1 or i2 or i3)

begin

case ({s1, s0})

2'b00: out = i0;

2'b01: out = i1;

2'b10: out = i2;

2'b11: out = i3;

default: out = 1'bx;

endcase

end

endmodule

RESULTS

62

LAB SESSION 13

Total Marks

Marks Obtained

Remarks (If Any):

Instructor Name:

Instructor Signature: Date:

63

LAB SESSION 14

OBJECTIVE

 To explore Quartus-II Software for Development of Verilog HDL codes.

 To design and test Verilog HDL code of a given function.

EQUIPMENT

 Quartus II software installed PCs

 ALTERA DE2 Board

PROCEDURE

1. Open the Quartus II software.

2. Create a new project by selecting “Create a New Project (New Project Wizard)” as

shown in Figure below.

3. Select a suitable name for your new directory (or you can use the existing one) and also the

name of the project and click on next option.

4. After creating new directory and project, create a new file by selecting File => New and

select Verilog HDL File type as shown in Figure below.

64

5. A command window will appear. Write your program and save it with the same name as

given in module command. (Make sure that file should be saved in the same project

directory mentioned in step 2)

6. Now compile your program by selecting Processing => start compilation.

7. After completion of compilation a message will appear “full compilation was successful”.

8. To verify your verilog code on ALTERA board, assign suitable pins/switches/LEDs to your

input/output terminals by Assignments => Pin Planner. A pin planner window will

appear.

Pin assignments

Start I/O Assignment

Analysis

65

9. Assign switches and LEDs to all input and output terminals respectively and start I/O

assignment analysis as shown in above figure. The location of ALTERA DE2 board can be

selected from “ALTERA DE2 user manual”.

10. After I/O assignment analysis, now code is ready to be dumped in ALTERA DE2 board.

Select Tools => Programmer and after selection of USB blaster option select Start. A

100% completion message will appear, when program is completely dump.

11. Now, you can test your program on ALTERA DE2 board.

RESULTS:

66

LAB SESSION 14

Total Marks

Marks Obtained

Remarks (If Any):

Instructor Name:

Instructor Signature: Date:

