
1

Department of Electronic Engineering
NED University of Engineering & Technology

LABORATORY WORKBOOK

For the Course

DIGITAL IMAGE PROCESSING

(TC-424)

Instructor Name:

Student Name:

Roll Number: Batch:

Semester: Year:

Department:

2

LABORATORY WORKBOOK

For the Course

DIGITAL IMAGE PROCESSING

(TC-424)

Prepared By:

Ms. Sundus Ali (Lecturer)

Reviewed By:
Dr. Muhammad Imran Aslam (Associate Professor)

Approved By:

The Board of Studies of Department of Electronic Engineering

1

CONTENTS

Lab
No.

Date Experiments CLO Signature

1

To study and investigate the basic operations on
matrices in MATLAB

3

2
 To study and investigate the loop operation in

MATLAB
3

3
 To study and investigate the conditional / logical

statements in MATLAB
3

4

To study and investigate Basic Digital Image Operations

3

5
 To study and investigate Basic Digital Image Operations

and Histogram

3

6
 To study and perform Contrast Stretching, Histogram

Equalization and Specification

3

7
 To study and perform spatial domain filtering, on 2D

images, smoothening, sharpening and median filters on
real-time image

4

8

 To study and perform image restoration techniques,
inverse filtering and geometric transformation on real-
time image

4

9

Apply Image Compression using Huffman Coding 3

10

To study and apply image segmentation techniques for
point and line detection using real-time image

4

11

To study and apply image segmentation techniques for
edge detection using real time image

4

12 To study and apply image segmentation techniques for
region based segmentation

3

13 Video Conferencing through NetMeeting 3

14 Open-ended lab: To apply JPEG compression on a gray
scale image using DCT

3

2

LAB SESSION 01

To study the basic operation on matrices in MATLAB

Student Name:

Roll Number: Batch:

Semester: Year:

Total Marks

Marks Obtained

Remarks (If Any):

Instructor Name:

Instructor Signature: Date:

3

LAB SESSION 01

Objective:-

To study and investigate basic operations on matrices in MATLAB

Equipment Required:-

- MATLAB
- Image Processing Toolbox

Theory:-

Entering and quitting MATLAB

To open MATLAB double click on the MATLAB icon. To leave MATLAB, simply type quit on command
prompt and press enter.

Some basic commands
To check the list of installed toolboxes type
ver
To clear the screen type
clc
To clear the workspace type
clear
To list the current variables type
who
To list the current variables in long form type
Whos

Loading and saving variables
To save the current variables type
save<variable name>
To load the current variables type
load< variable name >
To save all the variables type
save<file name>
To load all the variables type
load< file name >

Creating and manipulating matrices & vectors
To create a vector v simply type in:
 v = [2 4 7 5]

After pressing “return” the value of v will have been echoed back to you.
To suppress echo use semicolon after the command
 w = [1 3 8 9];

To create,

0

0

1

1

z

you can type
z = [1; 1; 0; 0]; or
z = [1

4

1
 0
 0];

To enter the matrix,

43

21
M

The most obvious way is,
M = [1 2; 3 4] or
M = [[1 3]’ [3 4]’]

Polynomials
In MATLAB, a polynomial is represented by a vector. To create a polynomial in MATLAB, simply enter
each coefficient of the polynomial into the vector in descending order. For instance, let's say you have the
following polynomial:
x4+3x3-15x2-2x+9
To enter this into MATLAB, just enter it as a vector in the following manner
x = [1 3 -15 -2 9]
You can find the value of a polynomial using the polyval function. For example, to find the value of the
above polynomial at x=2,
Z=polyval([1 3 -15 -2 9], 2)
Or
Z=polyval(x,2)
Finding the roots would be as easy as entering the following command;
roots([1 3 -15 -2 9])
Or
roots(x)

Convolution and De-convolution of Polynomials
The product of two polynomials is found by taking the convolution of their coefficients.
x+2 and x2+4x+8
x = [1 2];
y = [1 4 8];
z = conv(x,y)
 z =
1 6 16 16
deconv is used to divide two polynomials. The deconv function will return the remainder as well as the
result. Let's divide z by y and see if we get x
[xx, R] = deconv(z,y)

Laboratory Task:-

Task#1: Investigate the effect of following commands
(a) c=3 (b) d= 2*c/3 (c) e=c*d^2 (d) f=c-d+e (e) who
(f) whos (g) Save my work (h) clear (i) Load my work

Task#2: Investigate the effect of the following commands:
(a) v(2) (b) sum = v + w (c) diff = v – w (d) vw = [v w] (e) vw(2: 6)
(f) v’ (g) v./w (h) v.*w

Task#3: Investigate the effect of the following commands:
(a) z’ (b) z*v
(c) [v; w] (d) v*z

5

(e) [z; v’] (f) z + v’

Task#4: Investigate the effect of the following commands:
(a) N = inv(M) (b) M*N (c) I = eye(2)
(d) M + I (e) M*z(1:2) (f) v(3:4)*M
(g) M(1,1) (h) M(1:2,1:2) (i) M(:,1)
(j) M(2,:)

Task#5: Suppose x=2t2+3t+10 and y=3t2+t-7
(a) Enter the following polynomials in the MATLAB.
(b) Find the value of x at t=3 and value of y at t=2.
(c) Find out the roots of the polynomials.
(d) Multiply both polynomials
(d) Divide x by t+1.

Result:-

The results / output of all five tasks must be attached with this lab.

6

LAB SESSION 02

To study and investigate Loop Operations on matrices in MATLAB

Student Name:

Roll Number: Batch:

Semester: Year:

Total Marks Marks Obtained

Remarks (If Any):

Instructor Name:

Instructor Signature: Date:

7

LAB SESSION 02

Objective:-

To study and investigate Loop operations on matrices in MATLAB

Equipment Required:-

- MATLAB
- Image Processing Toolbox

Theory:-

During any operation, MATLAB walks through the arrays, element-by-element, and operates the scalar in
each array position. This process is performed in a loop. MATLAB provides two basic loops; For loop &
While loop

for Loop:

Programs for numerical simulation often involve repeating a set of commands. In MATLAB, we instruct
the computer to repeat a block of code a certain number of times, by using a “for loop”.

Simple Example would be:
for i=1:10
disp(i)
end
This code simply repeats code between for and end statements, for i=1,2,...,10. “disp(i)” prints out the
value of the loop. “end” ends the section of code that is being repeated.

Another Example would be:
for i=0:5:100
disp(i)
end

for i = 0 : 5 : 100
where,
0 refers to lower limit
100 refers to upper limit &
5 refers to an increment b/w upper & lower limit

Nested Loops:
Nesting the loops means,“placing loops in one above another” or “executing one loop in other”
Example:

8

for a=10:10:50
 for b=0:1:10
 disp(‘this class is boring')
 end
end

Relational Operators:
< less than
> greater than
= equal to
<= less than equal to
>= greater than equal to
~= not equal to
& and
| or
~ not

While Loop:

The while loop repeats a sequence of commands, as long as some condition is met. We usually do not enter
the number of times while loop has to be repeated.

Example:
n = 10;
while n > 0
disp(‘this class is boring’)
n = n - 1;
end

Another example can be:
n = 1;
while n > 0
disp(‘i will work hard to pass in exams’)
n = n + 1;
end

Laboratory Task:-

 1. By using for loop,

1. Make a program to print twenty numbers, starting from your Roll no. and onwards.
2. Make a program to count backwards from 100 to 0.
3. Make a table of nine (9) till thirty multiples.
4. Make a program which squares any 10 numbers in successive order.
5. Make a program which prints numbers from 1 to 20 every 10 times.

2. By using while loop,

9

Make a 2D grid of XY data points using nested while loops

Result:-

The code, results / output of all tasks must be attached with this lab.

10

LAB SESSION 03

To study and investigate Conditional Statements in Matrices using MATLAB

Student Name:

Roll Number: Batch:

Semester: Year:

Total Marks Marks Obtained

Remarks (If Any):

Instructor Name:

Instructor Signature: Date:

11

LAB SESSION 03

Objective:-

To study and investigate Conditional Statements in matrices using MATLAB

Equipment Required:-

- MATLAB
- Image Processing Toolbox

Theory:-

Conditional Statements:
In writing programs, we often need to make decisions based on the values of variables in memory. In order
to accomplish it we generally use conditional statements.

if Structure:

if (expression)
(statement)

Example:
num=input(‘press the number 2 key: ‘)
if (num == 2)
disp(‘the key pressed is 2’)
else
disp(‘unrecognized key’)
end

Laboratory Task:-

By using if else statement,

Create a number guessing game.

Result:-

The code, results / output of all tasks must be attached with this lab.

12

LAB SESSION 04

To study and perform basic operations on digital images using MATLAB

Student Name:

Roll Number: Batch:

Semester: Year:

Total Marks Marks Obtained

Remarks (If Any):

Instructor Name:

Instructor Signature: Date:

13

LAB SESSION 04

Objective:-

To study and perform basic operations on digital images using MATLAB

Equipment Required:-

- MATLAB
- Image Processing toolbox

Theory:-

Reading an Image

To import an image from any supported graphics image file format, in any of the supported bit depths, use

the imread function.

Syntax

A = imread (filename.fmt)

Description

A = imread(filename.fmt) reads a greyscale or color image from the file specified by the string filename,

where the string fmt specifies the format of the file. If the file is not in the current directory or in a directory

in the MATLAB path, specify the full pathname of the location on your system.

Display an Image
To display image, use the imshow function.

Syntax

imshow(A)

Description

imshow(A) displays the image stored in array A.

Writing Image Data
Imwrite write image to graphics file

Syntax

imwrite(A,filename,fmt)

Example:

a=imread('pout.tif');

imwrite(a,gray(256),'b.bmp');

14

imshow('b.bmp')% imshow is used to display image

Figure 1 A grey scale image

Accessing the Pixel data
There is a one-to-one correspondence between pixel coordinates and the coordinates MATLAB uses for

matrix subscripting. This correspondence makes the relationship between an image's data matrix and the

way the image is displayed easy to understand. For example, the data for the pixel in the fifth row, second

column is stored in the matrix element (5,2). You use normal MATLAB matrix subscripting to access

values of individual pixels. For example, the MATLAB code

A(2,15)

returns the value of the pixel at row 2, column 15 of the image A.

Image Cropping

imcrop displays the image in a figure window and creates an interactive Crop Image tool associated with the
image. The image can be a grayscale image, a truecolor image, or a logical array.

Example:

Read image into the workspace.

I = imread('cameraman.tif');

15

Then, Open Crop Image tool associated with this image. Specify a variable in which to store the cropped
image. The example includes the optional return value rect in which imcrop returns the four-element
position vector of the rectangle you draw.

[J, rect] = imcrop(I);

When you move the cursor over the image, it changes to a cross-hairs . The Crop Image tool blocks the
MATLAB command line until you complete the operation. Using the mouse, draw a rectangle over the
portion of the image that you want to crop.

Figure 2. Image before cropping

Perform the crop operation by double-clicking in the crop rectangle or selecting Crop Image on the context
menu.

Figure 3. Image being cropped

16

The Crop Image tool returns the cropped area in the return variable, J. The variable rect is the four-element
position vector describing the crop rectangle you specified.

Laboratory Tasks:

1. Import and display a grey scale image using MATLAB.
2. Write the same image file on to another graphics file.
3. Also access three different picture elements of the same image and display their values.
4. Perform cropping of the same image using MATLAB

Result:-

The code, results / output of all tasks must be attached with this lab.

17

LAB SESSION 05

To study and investigate basic operations on digital images and histogram using MATLAB

Student Name:

Roll Number: Batch:

Semester: Year:

Total Marks Marks Obtained

Remarks (If Any):

Instructor Name:

Instructor Signature: Date:

18

LAB SESSION 05

Objective:-

To study and investigate basic operations on digital images and histogram using MATLAB

Equipment Required:-

- MATLAB
- Image Processing toolbox

Theory:-

Mirror Image Generation:
Horizontally flipping an image is called mirroring an image. This can be done using the following function:

Syntax:

 imfliplr(Image)

The resultant image can be allocated to a variable.

Figure 1. Source Image and resultant image after performing horizontal flip

19

Inverting an Image:

Vertically flipping an image is called inverting an image. This can be done using the following function:

Syntax:

 imflip(Image) or imflipud(Image)

The resultant image can be allocated to a variable.

Figure 2. Source Image with resultant image after vertical flip

Negative of an Image:

Image complement or image negative has significance application in the medical field. This is done by
subtracting the pixel values in the image from the highest possible pixel value. The resultant image is a
negative or complement of the source image.

Figure 3. Old and new pixel values (complement)

20

Use imcomplement function to generate negative of an image

Syntax:

B = imcomplement(A)

Figure 4. Before and after taking complement (negative) of a grey scale image

Figure 5. Before and after taking complement (negative) of an RGB image

Rotating an Image:

Imrotate function used to rotate a grey scale or RGB Image.

Syntax:

B = imrotate(A,angle)

The value of angle is given in degrees and the image rotates in anti-clockwise direction according to the
angle.

21

Figure 6. Before and after applying a +30 degrees rotation to an RGB image

RGB to Grey Scale conversion:

Sometimes it is more suited and convenient to process images in grey scale format rather than in color
format. This saves time, memory and other resources (like bandwidth etc). In order to convert an RGB
image to grey scale image we use the following function:

Syntax:

I= rgb2gray(B)

Figure 7. Before and after applying RGB to gray scale conversion

Histogram:

The (intensity or brightness) histogram shows how many times a particular grey level (intensity) appears in
an image. For example, 0 - black, 255 – white

An image has low contrast when the complete range of possible values is not used. Inspection of the
histogram shows this lack of contrast.

Syntax:

Imhist(I);

22

Figure 8. Image histogram of a low contrast grey scale image

Figure 9. Image histogram of a high contrast RGB image

Laboratory Task:-

Applying the following operations on a grey scale image and an RGB image:

• Mirroring
• Inverting
• Negative
• Rotating at +30, -30, +90,-90 degrees
• Histogram

Also apply RGB to Grey Scale conversion of the RGB image

Result:-

The code, results / output of all tasks must be attached with this lab.

23

LAB SESSION 06

To study and perform contrast stretching, Histogram equalization and
specification using MATLAB

Student Name:

Roll Number: Batch:

Semester: Year:

Total Marks Marks Obtained

Remarks (If Any):

Instructor Name:

Instructor Signature: Date:

24

LAB SESSION 06

Objective:-

To study and perform contrast stretching, Histogram equalization and specification/matching using
MATLAB

Equipment Required:-

- MATLAB
- Image Processing toolbox

Theory:-

Histograms:
 Given a grayscale image, it’s histogram consists of the histogram of its gray levels; that is, a graph
indicating the number of times each gray level occurs in the image. We can infer a great deal about the
appearance of an image from its histogram. In a dark image, the gray levels would be clustered at the lower
end. In a uniformly bright image, the gray levels would be clustered at the upper end. In a well contrasted
image, the gray levels would be well spread out over much of the range.

Problem: Given a poorly contrasted image, we would like to enhance its contrast, by spreading out its
histogram. There are two ways of doing this.

Histogram Stretching: (Contrast Stretching)
If we have a poorly contrasted image of range [a,b], we can stretch the gray levels in the center of the range
out by applying a piecewise linear function. This function has the effect of stretching the gray levels [a,b] to
gray levels [c,d], where a<c and d>b, according to the equation:

𝑗 =
(𝑐 − 𝑑)

(𝑏 − 𝑎)
 (𝑖 − 𝑎) + 𝑐

Here, pixel values less than c are all converted to c, and pixel values greater than d are all converted to d.

Syntax:

 imadjust(I,[a,b],[c,d])

Figure 1. Before Contrast Stretching

25

Figure 2. After Contrast Stretching

Figure 3. Another Before and After Contrast Stretching Example

Figure 4. Before Contrast stretching

Figure 5. After Contrast Stretching

Histogram Equalization:

Intensity transformation functions based on information extracted from image intensity histograms play a
basic role in image processing, in areas such as enhancement, compression, segmentation, and description.
The Histogram equalization generates an image whose intensity levels are equally likely, and, in addition,
cover the entire range [0, 1]. The net result of this intensity-level equalization process is an image with in-

26

creased dynamic range, which will tend to have higher contrast. Note that the transformation function is
really nothing more than the cumulative distribution function (CDF).

Syntax:

g = histeq(f, nlev)

Where f is the input image and nlev is the number of intensity levels specified for the output image. If nlev is equal to
L (the total number of possible levels in the input image), then histeq implements the transformation function,
T(rk), directly. If nlev is less than L, then histeq attempts to distribute the levels so that they will approximate a flat
histogram.

Unlike imhist, the default value in histeq is nlev=64. For the most part, we use the maximum possible number of levels
(generally 256) for nlev because this produces a true implementation of the histogram-equalization method just
described.

Figure 6. Before Histogram Equalization

Figure 7. After Histogram Equalization

27

Figure 8. Before Histogram Equalization

Figure 9. After Histogram Equalization

Histogram Specification:

Histogram equalization produces a transformation function that is adaptive, in the sense that it is based on
the histogram of a given image. However, once the transformation function for an image has been
computed, it does not change unless the histogram of the image changes. As noted earlier, histogram
equalization achieves enhancement by spreading the levels of the input image over a wider range of the
intensity scale. We show in this section that this does not always lead to a successful result. In particular, it
is useful in some applications to be able to specify the shape of the histogram that we wish the processed
image to have. The method used to generate a processed image that has a specified histogram is called
histogram matching or histogram specification. In histogram equalization, the discrete implementation of
the preceding method only yields an approximation to the specified histogram.

Syntax:

g = histeq(f, hspec)

Where f is the input image, hspec is the specified histogram (a row vector of specified values), and g is the
output image, whose histogram approximates the specified histogram, hspec. This vector should contain
integer counts corresponding to equally spaced bins. A property of histeq is that the histogram of g
generally better matches hspec when length (hspec) is much smaller than the number of intensity levels in f.
At first glance on image produced by histogram equalization, one might conclude that histogram
equalization would be a good approach to enhance the image, so that details in the dark areas become more
visible. However, the result in Figure below, obtained using the command

>> f1 = histeq(f, 256);

28

Figure 10. Image and it’s histogram before histogram matching

Figure 11. Image and it’s histogram after applying histogram matching

shows that histogram equalization in fact did not produce a particularly good result in this case. The reason
for this can be seen by studying the histogram of the equalized image, shown in the figure. Here, we see that
that the intensity levels have been shifted to the upper one-half of the gray scale, thus giving the image a
washed-out appearance. The cause of the shift is the large concentration of dark components at or near 0 in
the original histogram. In turn, the cumulative transformation function obtained from this histogram is
steep, thus mapping the large concentration of pixels in the low end of the gray scale to the high end of the
scale.

One possibility for remedying this situation is to use histogram matching, with the desired histogram having
a lesser concentration of components in the low end of the gray scale, and maintaining the general shape of
the histogram of the original image.

We note from Fig.2 that the histogram is basically bimodal, with one large mode at the origin, and another,
smaller, mode at the high end of the gray scale. These types of histograms can be modeled, for example, by
using multimodal Gaussian functions. The M-function described in procedure section of this lab computes
a bimodal Gaussian function normalized to unit area, so it can be used as a specified histogram.

29

Laboratory Tasks:-

1. Apply contrast stretching on any low contrast image
2. Import and save an image and display its image histogram. Also, apply histogram equalization

keeping the following values of nlevs:
a. 64 b. 128 c. 256

 For each case plot the resultant histogram and image
3. Perform histogram matching on an image using bi modal Guassian function.

Result:-

The code, results / output of all tasks must be attached with this lab.

30

LAB SESSION 07

To study and perform spatial domain filtering, on 2D images, smoothening, sharpening and

median filters using real-time image

Student Name:

Roll Number: Batch:

Semester: Year:

Total Marks Marks Obtained

Remarks (If Any):

Instructor Name:

Instructor Signature: Date:

31

LAB SESSION 07

Objective:-

To study and perform spatial domain filtering, on 2D images, smoothening, sharpening and median filters using real-
time image

Equipment Required:-

- Image capturing device (camera, cell phone etc)
- Data transferring cable
- MATLAB
- Image Processing Toolbox

Theory:-

Spatial filtering:

Spatial or neighborhood processing consists of (1) defining a center point,(x,y); (2) performing an operation
that involves only the pixels in a predefined neighborhood about that center point (3) letting the result of
that operation be the "response" of the process at that point; and (4) repeating the process for every point in
the image. The process of moving the center point creates new neighborhoods, one for each pixel in the
input image. The two principal terms used to identify this operation are neighborhood processing and
spatial filtering, with the second term being more prevalent. As explained in the following section, if the
computations performed on the pixels of the neighborhoods are linear, the operation is called linear spatial
filtering (the term spatial convolution also used); otherwise it is called non-linear spatial filtering.

Linear Spatial Filters
The toolbox supports a number of predefined 2-D linear spatial filters, obtained by using function fspecial,
which generates a filter mask, w, using the syntax

 Syntax:

w=fspecial(type= parameters)

Where type specifies the filter type, and parameters further define the specified filter. The spatial filter we
are about to use in this lab is ‘laplacian’ and its applicable parameters are as described below:

'laplacian' fspecial ('laplacian' , alpha). A 3X3 Laplacian filter whose shape is specified by alpha, a
number in the range (0,1]. The default value for alpha is 0.5.

Because the Laplacian is a derivative operator, it sharpens the linage but drives constant are as to zero.
Adding the original image back restores the gray-level to nality. Function fspecial(‘laplacian’, alpha)
implements a more general Laplacian mask:

𝛼

1 + 𝛼

1 − 𝛼

1 + 𝛼

𝛼

1 + 𝛼

1 − 𝛼

1 + 𝛼

−4

1 + 𝛼

1 − 𝛼

1 + 𝛼

𝛼

1 + 𝛼

1 − 𝛼

1 + 𝛼

𝛼

 1 + 𝛼

32

Which allows fine tuning of enhancement results. Enhancement in this case consists of sharpening
the image, while preserving as much of its gray tonality as possible.

Non-Linear Spatial Filtering:

A commonly used tool for generating nonlinear spatial filters in IPT is function ordfilt2, which generates
orderstatisticfilters (also called rank filters). These are non-linear spatial filters whose response is based on
ordering (ranking) the pixels contained in an image neighborhood and then replacing the value of the center
pixel in the neighborhood with the value determined by the ranking result. Attention is focused in this
section on non-linear filters generated by ordfilt2. The best-known order statistic filter in digital image
processing is the ‘median filter’ which corresponds to the 50th percentile. The toolbox provides a
specialized implementation of the 2-D median filter:

Syntax:

g = medfilt2 (f, [m n], padopt)

where the tuple [m n] defines a neighborhood of size m x n over which the median is computed, and
padopt specifies one of three possible border padding options: 'zeros' (the default), 'symmetric' in
which f is extended symmetrically by mirror-reflecting it across its border, and 'indexed', in which f is
padded with 1s if it is of class double and with 0s otherwise. The default form of this function is

g = medfilt2(f)

which uses a 3 X 3 neighborhood to compute the median, and pads the border of the input with 0s. Median
filtering is a useful tool for reducing salt-and-pepper noise in image.

Laboratory Tasks:-

1. After taking a real-time image from image capturing device, apply Laplacian filter on the image
when:
a. Alpha = 0
b. Filter has -8 at the center
Generate image plots as results to show the effect of the filter on the output

2. After converting the same image to grey scale, apply median filter on the image by:
a. Introducing salt and pepper noise in the image
b. Removing the noise by apply (1) a default median filter (2) median filter with one of the

mentioned padding options (refer to the theory discussed above)
Generate image plots as results to show the effect of the filter on the output

Result:-

The code, results / output of all tasks must be attached with this lab.

33

LAB SESSION 08

To study and perform image restoration techniques, inverse filtering and geometric
transformation using real-time image

Student Name:

Roll Number: Batch:

Semester: Year:

Total Marks Marks Obtained

Remarks (If Any):

Instructor Name:

Instructor Signature: Date:

34

LAB SESSION 08

Objective:-

To study and perform image restoration techniques, inverse filtering and geometric transformation using real-time
image

Equipment Required:-

- Image capturing device (camera, cell phone etc)
- Data transferring cable
- MATLAB
- Image Processing Toolbox

Theory:-

Image Restoration:
The objective of restoration is to improve a given image in some predefined sense. Although there are some
areas of overlap between image enhancement and restoration, the former is largely a subjective process,
while image restoration is for the most part an objective process. Restoration attempts to or recover an
image that has been degraded by using some degradation phenomenon. Thus, restoration techniques are
oriented toward modeling the degradation and applying the inverse process in order to recover the original
image.
Inverse Filtering:
The simplest approach we can take to restoring a degraded image is to form an estimate of the form

F (u,v) = G(u,v)/H(u,v)
And then obtain the corresponding estimate of the image by taking the inverse Fourier transform of F(u, v)
[where G(u, v) is the Fourier transform of degraded image, H(u,v) is the degrading function]. This
approach is appropriately called ‘inverse filtering’.
Wiener filtering is implemented in IPT using function deconvwnr, which has three possible syntax forms. In
all these forms, g denotes the degraded and fr is the restored image. The first syntax form,

fr = deconvwnr(g, PSF)

assumes that the noise-to-signal ratio is zero.

Thus, this form of the Wiener filter is the inverse filter mentioned in syntax

Syntax:

Fr = deconvwnr (g, PSF, NSPR)

assumes that the noise-to-signal power ratio is known, either as a constant or array; the function accepts
either one. This is the syntax used to implement the parametric Wiener filter, in which case NSPR would be
an interactive scalar input. Finally, the syntax

fr = deconvwnr (g, PSF, NACORR, FACORR)

35

assumes that autocorrelation functions, NACORR and FACORR, of the noise and under-graded image are
known.

Geometric Transformation:
Geometric transformations are used frequently to perform image registration, a process that takes two
images of the same scene and aligns them so that they can be merged for visualization, or for quantitative
comparison. One of the most common form of spatial transformation is affine transformation. This
transformation can scale, rotate, translate, or shear a set of points, depending on the values chosen for the
elements of T. Table shows how to the values of the elements to achieve different transformations.

Table 5.3 (Taken from Chapter 5 of book named “Digital Image Processing using Matlab”by Rafael C.
Gonzalez, Richard E. Woods and Steven L. Eddins)

IPT represents spatial transformations using a so-called t-form structure. One way to create such a structure
is by using function make t-form, whose calling syntax is:

Syntax:

maketform(transform_type, transform_parameters)

Affine transformation matrix in this case has the form

𝑇 =
𝑠 𝑐𝑜𝑠𝜃 𝑠 𝑠𝑖𝑛𝜃 0

−𝑠 𝑠𝑖𝑛𝜃 𝑠 𝑐𝑜𝑠𝜃 0
𝛿𝑥 𝛿𝑦 1

36

IPT function imtransform uses inverse mapping instead. An inverse ping procedure scans each output pixel
in turn, computes the corresponding location in the input image using T-1{(x, y)}, and interpolates among
nearest input image pixels to determine the output pixel value. Inverse mapping is generally easier to
implement than forward mapping.
The basic calling syntax for imtransform is

g = imtransform(f, tform, interp)

where interp is a string that specifies how input image pixels are interpolated to obtain output pixels;
interp can be either 'nearest', 'bilinear', 'bicubic'. The interp input argument can be omitted, in which case
it defaults to 'bilinear'.

Laboratory Task:-

1. After obtaining an RGB image from image capturing device, degrade the image by adding
Gaussian noise, apply different deconvolution functions (mentioned in Theory section) in order to
restore the original image.

2. Apply geometric transformation on a real-time acquired image using imtransform functions
discussed in the Theory section.

Result:-

The code, results / output of all tasks must be attached with this lab.

37

LAB SESSION 09

Apply Image Compression using Huffman Coding

Student Name:

Roll Number: Batch:

Semester: Year:

Total Marks Marks Obtained

Remarks (If Any):

Instructor Name:

Instructor Signature: Date:

38

LAB SESSION 09

Objective:-

Apply Image Compression using Huffman Coding

Equipment Required:-

- MATLAB
- Image Processing Toolbox

Theory:-

Image Compression:

Image compression addresses the problem of reducing the amount of data required to represent a digital
image. Compression is achieved by the removal one or more of three basic data redundancies: (1) coding
redundancy, which present when less than optimal (i.e., the smallest length) code words are (2) inter-pixel
redundancy, which results from correlations between the pixel of an image; and/or (3) psycho-visual
redundancy, which is due to data that ignored by the human visual system (i.e., visually nonessential
information).

Huffman Coding:

When coding the gray levels of an image or the output of a gray-level mapping operation (pixel differences,
run-lengths, and so on), Huffman codes contain the smallest possible number of code symbols (e.g., bits)
per source symbol(e.g. gray-level value) subject to the constraint that the source symbols are coded one at a
time.
The first step in Huffman's approach is to create a series of source reductions by ordering the probabilities
of the symbols under consideration and combining the lowest probability symbols into a single symbol that
replaces them in the next source reduction

The second step in Huffman's procedure is to code each reduced source, starting with the smallest source
and working back to the original source. The minimal length binary code for a two-symbol source, of
course, consists of the symbols 0 and 1. As the reduced source symbol with probability 0.5 was generated
by combining two symbols in the reduced source to its left. The 0 used to code it is now assigned to both of
these symbols and a 0 and 1 are arbitrarily appended to each to distinguish them from each other. This
operation is then repeated for each reduced source until the original source reached.

Laboratory Task:-

Write a MATLAB code for applying Huffman Encoding on a 2D image.

Result:-

The code, results / output of all tasks must be attached with this lab.

39

LAB SESSION 10

To study and apply image segmentation techniques for point and line detection using real-
time image

Student Name:

Roll Number: Batch:

Semester: Year:

Total Marks Marks Obtained

Remarks (If Any):

Instructor Name:

Instructor Signature: Date:

40

LAB SESSION 10

Objective:-

To study and apply image segmentation techniques for point and line detection using real-time image

Equipment Required:-

- Image capturing device (camera, cell phone etc)
- Data transferring cable
- MATLAB
- Image Processing Toolbox

Theory:-

Image Segmentation:

Segmentation subdivides an image into its constituent regions or objects. The level to which the subdivision
is carried depends on the problem being solved. That is, segmentation should stop when the objects of
interest in an application have been isolated.

Point, Line and Edge Detection:

In this lab, we will discuss techniques for detecting the three basic types of intensity discontinuities in a
digital image: points, lines, and edges (we will continue edge detection in next lab). The most common way
to look for discontinuities is to run a mask through the image.

Point Detection:

The detection of isolated points embedded in areas of constant or nearly constant intensity in an image is
called Point detection. Point detection is implemented in MATLAB using function imfilter, with the mask.
The important requirements are that the strongest response of a mask must be when the mask is centered on
an isolated point, and that the response be 0 in areas of constant intensity.
If T is given, the following command implements the point detection approach just discussed:

>> g = abs(imfilter(double(f), w)) >= T;

where f is the input image, w is an appropriate point-detection mask, and g is the resulting image. Recall
that imfilter converts its output to the class of the input, so we use double (f) in the filtering operation to
prevent premature truncation of values if the input is of class uint8, and because the abs operation does
accept integer data. The output image g is of class logical; its values are 0 and 1. If T is not given, its value
often is chosen based on the filtered in which case the previous command string is broken down into three
basic steps
(1) Compute the filtered image, abs (imfilter (double (f) , w)),
(2) find the value for T using the data from the filtered image, and
(3) compare the image against T.

41

Line Detection:

The next level of complexity is line detection. Consider the masks in figure 1. First mask were moved
around an image, it would respond more strongly to the lines (one pixel thick oriented horizontally. With a
constant background, maximum response would result when the line passed through the middle of the mask.
Similarly, the second mask in fig 1.responds best to lines oriented at+45°; the third mask to detect vertical
lines; and the fourth mask to lines in -45°direction. Note that the preferred direction of each mask is
weighted with a larger coefficient (i.e. 2) than other possible directions. The values of coeff icient s of
each mask sum to zero, indicating a zero response from the mask in areas of constant intensity.

Horizontal +450 Vertical -450
-1 -1 -1 -1 -1 2 -1 2 -1 2 -1 -1
2 2 2 -1 2 -1 -1 2 -1 -1 2 -1
-1 -1 -1 2 -1 -1 -1 2 -1 -1 -1 2

Figure 1. Various masks to detect image features

Laboratory Task:-

1. Write a MATLAB code capable of detecting points in an image.

2. Write a MATLAB code capable of detecting horizontal, vertical lines and lines at 45 degrees lines
in an image.

Result:-

The code, results / output of all tasks must be attached with this lab.

42

LAB SESSION 11

To study and apply image segmentation techniques for edge detection using real-time image

Student Name:

Roll Number: Batch:

Semester: Year:

Total Marks Marks Obtained

Remarks (If Any):

Instructor Name:

Instructor Signature: Date:

43

LAB SESSION 11

Objective:-

To study and apply image segmentation techniques for edge detection using real-time image

Equipment Required:-

- Image capturing device (camera, cell phone etc)
- Data transferring cable
- MATLAB
- Image Processing Toolbox

Theory:-

Image Segmentation:

Segmentation subdivides an image into its constituent regions or objects .The level to which the subdivision
is carried depends on the problem being solved. That is, segmentation should stop when the objects of
interest in an application have been isolated. In continuation of previous lab here we will do edge detection.

Edge Detection:

Although point and line detection certainly are important in any discussion image segmentation, edge
detection is by far the most common approach detecting meaningful discontinuities in intensity values. Such
discontinuities are detected by using first and second-order derivatives. With the preceding discussion as
background, the basic idea behind edge detection is to find places in an image where the intensity changes
rapidly, using one of two general criteria:

o Find places where the first derivative of the intensity is greater in magnitude than a specified
threshold

o Find places where the second derivative of the intensity has a zero

IPT’s function ‘edge’ provides several derivative estimators based on the criteria just discussed. For some
of these estimators, it is possible to specify whether the edge detector is sensitive to horizontal or vertical
edges or to both. The general syntax for this function is

Syntax:

[g, t] = edge (f, 'method', parameters)

Where f is the input image, method is one of the approaches listed in Table 1, and parameters are
additional parameters . In the output, g is a logical array with 1s at the locations where edge points were
detected in f and 0s elsewhere. Parameter t is optional; it gives the threshold used by edge to determine
which gradient values are strong enough to be called edge points.

Edge Detector Basic Properties
Sobel Finds edges using Sobel approximation to

derivatives

44

Prewitt Finds edges using Prewitt approximation to
derivatives

Roberts Finds edges using Roberts approximation to
derivatives

Laplacian of a Gaussian (LoG) Finding edges by looking for zero crossings after
filtering f(x,y) with Gaussian filter

Zero Crossing Finding edges by looking for zero crossings after
filtering f(x,y) with user specified filter

Canny Finding edges by looking for local maxima of the
gradient of f(x,y).The gradient is calculated using
derivative of a Gaussian filter. The method uses
two thresholds to detect strong and weak edges.
Therefore, this method is more likely to detect true
weak edges.

Table 1 Methods of edge detection

Laboratory Task:

Apply different methods (any three) of edge detection mentioned in Table 1 above to detect edges in a gray
scale image.

Result:-

The code, results / output of all tasks must be attached with this lab.

45

LAB SESSION 12

To study and apply image segmentation techniques for region based segmentation

Student Name:

Roll Number: Batch:

Semester: Year:

Total Marks Marks Obtained

Remarks (If Any):

Instructor Name:

Instructor Signature: Date:

46

LAB SESSION 12

Objective:-

To study and apply image segmentation techniques for region based segmentation

Equipment Required:-

- MATLAB
- Image Processing Toolbox

Theory:-

Region based Segmentation:

The objective of segmentation is to partition an image into regions. In previous lab we approached this
problem by finding boundaries between regions based on discontinuities in intensity levels. In this lab
we will discuss segmentation techniques that are based on finding the regions directly.

Segmentation Using the Watershed Transform:

In geography, a watershed is the ridge that divides areas drained by different river systems. A catchment
basin is the geographical area draining into a river or reservoir. The watershed transform applies these ideas
to gray-scale image processing in a way that can be used to solve a variety of image segmentation problems.
Understanding the watershed transform requires that we think of a gray scale image as a topological surface,
where the values of f(x, y) are interpreted as heights. We can, for example, visualize the simple image in
Fig.1 (a) as the three-dimensional surface in Fig. 1(b). If we imagine rain falling on this surface, it is clear
that water would collect in the two areas labeled as catchment basins. Rain falling exactly on the labeled
watershed ridgeline would be equally likely to collect in either of the two catchment basins. The watershed
transform finds the catchment basins and ridge lines in a gray-scale image. In terms of solving image
segmentation problems, the key concept is to change the starting image into another image whose
catchment basins are the objects or regions we want to identify.

Figure 1 (a) and (b)

Watershed Segmentation Using the Distance Transform

A tool commonly used in conjunction with the watershed transform for segmentation is the distance
transform. The distance transform of a binary image is a relatively simple concept: It is the distance from

47

every pixel to the nearest non-zero-valued pixel. Note that 1-valued pixels have a distance transform value
of 0. The distance transform can be computed using IPT function bwdist, whose calling syntax is

D=bwdist(f)

Watershed Segmentation Using Gradients
The gradient magnitudes used often to preprocess a gray-scale image prior to using the watershed
transform for segmentation. The gradient magnitude image has high pixel values along object edges, and
low pixel values everywhere else. Ideally, then, the watershed transform would result in watershed
ridgelines along object edges.

Marker-Controlled Watershed Segmentation

Direct application of the watershed transform to a gradient image usually leads to over segmentation due to
noise and other local irregularities of the gradient. The resulting problems can be serious enough to render
the result virtually useless. In the context of the present discussion, this means a large number of segmented
regions. A practical solution to this problem is to limit the number of allowable regions by incorporating a
preprocessing stage designed to bring additional knowledge into the segmentation procedure.

An approach used to control over segmentation is based on the concept of markers. A marker is a connected
component belonging to an image. We like to have a set of internal markers, which are inside each of the
objects of interest, as well as a set of external markers, which are contained within the background. These
markers are then used to modify the gradient image using a procedure described in last part of code given in
procedure. Various methods have been used for computing internal and external markers, many of which
involve the linear filtering, nonlinear filtering, and morphological processing described in previous chapters.
Which method we choose for a particular application is highly dependent on the specific nature of the
images associated with that application.

Laboratory Task:

With the help of MATLAB, apply the above mentioned region based segmentation techniques on an RGB
image.

Result:-

The code, results / output of all tasks must be attached with this lab.

48

LAB SESSION 13

To study and apply image segmentation techniques for region based segmentation

Student Name:

Roll Number: Batch:

Semester: Year:

Total Marks Marks Obtained

Remarks (If Any):

Instructor Name:

Instructor Signature: Date:

49

LAB SESSION 13

Objective:-

Video Conference using NetMeeting

Equipment Required:-

- Microsoft NetMeeting software
- Access to the internet

Theory:-

VIDEO CONFERENCING THROUGH MICROSOFT NETMEETING SOFTWARE:

Video conferencing becomes increasingly popular. Imagine that people can have a meeting through Internet
without physically getting together! In this lab, we use Microsoft’s NetMeeting8 software to have video
conferencing over two kinds of network, namely, the Local Area Network and the Wide Area Network.

Download Microsoft’s NetMeeting8 software from following website:
http://download.cnet.com/Microsoft-NetMeeting/3001-2381_4-10742128.html

Installing NetMeeting software is very straightforward. A standard Windows setup program asks questions
about where to place files and shortcuts, offering reasonable defaults, and then copies everything over.You
also choose whether or not to register in the directory.

Following is the GUI of Microsoft’s NetMeeting software:

50

Laboratory Task:

1. Over the Local Area Network (LAN): From CallNew call, call your partner’s IP
address1 directly.

1
2. Over the Wide Area Network (WAN): Login to the server with your partner by

51

CallLog on to Microsoft Internet Directory.

3. Compare the results of both video and audio part between LAN and WAN.

Result:-

The results / output of the task must be attached with this lab.

52

LAB SESSION 14

Open-ended lab: To apply JPEG compression on a gray scale image using DCT

Student Name:

Roll Number: Batch:

Semester: Year:

Total Marks Marks Obtained

Remarks (If Any):

Instructor Name:

Instructor Signature: Date:

53

LAB SESSION 14

Objective:-

Open-ended lab: To apply JPEG compression on a gray scale image using DCT

Equipment Required:-

- MATLAB
- Image Processing Toolbox

Laboratory Task:

Apply JPEG compression and display its effect on a gray scale image.

Result:-

The code, results / output of the task must be attached with this lab.

